giải phương trình 2x4-7x3+9x2-7x+2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^4-7x^3+9x^2-7x+2=0\)
\(\Leftrightarrow2x^4-x^3-6x^3+3x^2+6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x^4-x^3\right)-\left(6x^3-3x^2\right)+\left(6x^2-3x\right)-\left(4x-2\right)=0\)
\(\Leftrightarrow x^3\left(2x-1\right)-3x^2\left(2x-1\right)+3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)(1)
Ta dễ thấy \(x^3-3x^2+3x-2>0\forall x\) nên để PT (1) có nghiệm \(\Leftrightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy nghiệp phương trình trên là \(S=\left\{\frac{1}{2}\right\}\)
Sủa chút : \(\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(x^3-2x^2\right)+\left(-x^2+2x\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)
x3 - 7x + 6 = x3 - x - 6x + 6 = 0
⇔ x(x2 - 1) - 6(x - 1) = 0
⇔ x(x - 1)(x + 1) - 6(x - 1) = 0
⇔ (x - 1)(x2 + x - 6) = 0
⇔ (x - 1)(x - 2)(x + 3) = 0
\(\text{⇔}\left[{}\begin{matrix}x-1=0\\x-2=0\\x+3=0\end{matrix}\right.\)
\(\text{⇔}\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là S = {1;2;-3}
Chúc bạn học tốt@@
a) \(\Delta=169-56=113>0\)
\(\hept{\begin{cases}x_1=\frac{13+\sqrt{113}}{14}\\x_2=\frac{13-\sqrt{113}}{14}\end{cases}}\)
b) \(\Delta=25-4.3.60< 0\)
vô nghiệm
Với dạng bài này ta chỉ việc chia hoocne là ra nhé!
\(C1:x^4+x^3-8x^2-9x-9=0\\ \Leftrightarrow\left(x-3\right)\left(x^3+4x^2+4x+3\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+x+1\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x^2+x+1=0\left(VN\right)\end{matrix}\right.\)
\(C2:x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)
\(x^3-5x^2-2x^2+10x+5x-25=0\)
<=>\(x^2.\left(x-5\right)-2x\left(x-5\right)+5.\left(x-5\right)=\left(x-5\right)\left(x^2-2x+5\right)=0\)
<=>hoặc x-5=0 =>x=5
hoặc x^2-2x+5=0 (tự biến đổi ra ) <=>(x-1)^2=-4(loại)
Vậy nghiệm của pt là x=5
<=>\(x^3-7x^2+15x-25=\left(x-5\right)\left(x^2-2x+5\right)\)
=>\(x^2-2x+5=0\)
có biệt thức
\(\left(-2\right)^2-4\left(1.5\right)=-16\)
=>PT trên ko có nghiệm
=>x=5
vì x=0 không là nghiệm của pt => chia cả 2 vế cho x2≠0
2x2-7x+9-\(\dfrac{7}{x}\)+\(\dfrac{2}{x^2}\)=0
<=>\(\left(2x^2+\dfrac{2}{x^2}\right)-\left(7x+\dfrac{7}{x}\right)+9=0\)
<=>\(2\left(x^2+\dfrac{1}{x^2}\right)-7\left(x+\dfrac{1}{x}\right)+9=0\)
đặt \(x+\dfrac{1}{x}\)=y =>\(x^2+\dfrac{1}{x^2}=y^2-2\) ta đc
2(y2-2)-7y+9=0
<=> 2y2-4-7y+9=0
<=>2y2-7y+5=0
<=> 2y2-2y-5y+5=0
<=> (2y2-2y)-(5y-5)=0
<=> 2y(y-1)-5(y-1)=0
<=>(y-1)(2y-5)=0
<=>\(\left\{{}\begin{matrix}y-1=0\\2y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\y=\dfrac{5}{2}\end{matrix}\right.\)
Với y=1 ta có
\(x+\dfrac{1}{x}=1\) =>x2-x+1=0 (vô nghiệm)
Với y=5/2
\(x+\dfrac{1}{x}=\dfrac{5}{2}\) => x=2 và x=\(\dfrac{1}{2}\)
vậy pt có S=\(\left\{2;\dfrac{1}{2}\right\}\)
\(2x^4-7x^3+9x^2-7x+2=0\)
\(\Leftrightarrow2x^4-2x^3-x^3-4x^3+2x^2+x^2+4x^2+2x^2-x-4x-2x+2=0\)
\(\Leftrightarrow\left(2x^4-2x^3+2x^2\right)-\left(x^3-x^2+x\right)-\left(4x^3-4x^2+4x\right)+\left(2x^2-2x+2\right)=0\)
\(\Leftrightarrow2x^2\left(2x^2-2x+2\right)-\dfrac{1}{2}x\left(2x^2-2x+2\right)-2x\left(2x^2-2x+2\right)+\left(2x^2-2x+2\right)=0\)
\(\Leftrightarrow\left(2x^2-2x+2\right)\left(x^2-\dfrac{1}{2}x-2x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-2x+2\right)\left[x\left(x-\dfrac{1}{2}\right)-2\left(x-\dfrac{1}{2}\right)\right]=0\)
\(\Leftrightarrow\left(2x^2-2x+2\right)\left(x-\dfrac{1}{2}\right)\left(x-2\right)=0\)
Vì: \(2x^2-2x+2=\left(\sqrt{2}x-\dfrac{\sqrt{2}}{2}\right)^2+\dfrac{3}{2}>0\forall x\)
Nên: \(\left[{}\begin{matrix}x-\dfrac{1}{2}=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy..................
p/s: 1 cách khác :))