K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

a,  a b + b a = (10a+b)+(10b+a) = 11a+11b = 11.(a+b) ⋮ 11

b,  a b - b a = (10a+b) - (10b+a) = 9a - 9b = 9(a - b)9 (a>b)

23 tháng 8 2021

a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)

Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11

23 tháng 8 2021

b) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=10a+b-10b-a=9a-9b=9.\left(a-b\right)\)

Vì 9⋮9 nên với \(a>b\) thì \(\overline{ab}-\overline{ba}⋮9\)

29 tháng 12 2023

a; a - b ⋮ 6

    a - b + 12b ⋮ 6

   a + 11b ⋮ 6 (đpcm)

b;  a - b ⋮ 6

     a -  b  - 12a ⋮ 6

          -11a - b ⋮ 6

        -(11a + b) ⋮ 6

         11a + b    ⋮ 6 (đpcm)

 

29 tháng 12 2023

Em cảm ơn cô ạ

 

27 tháng 10 2017

a/ ab+ba chia hết cho 11 

Vì tổng các số chẵn -tổng các số lẻ:(b+a)-(a+b)=0 chia hết cho 11

=>Tổng ab+ba chia hết cho 11

30 tháng 12 2015

Xét tổng: 5(6a + 11b) + (a + 7b) = 30a + 55b + a + 7b = 31a + 62b = 31(a + 2b) chia hết cho 31

=> 5(6a + 11b) + (a + 7b) chia hết cho 31 (1)

+ Chứng minh chiều xuôi (=>) (Tức có 6a + 11b chia hết cho 31, cm a + 7b chia hết cho 31)

Ta có: 6a + 11b chia hết cho 31

=> 5(6a + 11b) chia hết cho 31, Kết hợp với (1) đc: a + 7b chia hết cho 31

+ Chứng minh chiều ngược (<=) (Tức có a + 7b chia hết cho 31, cm 6a + 11b chia hết cho 31)

Ta có: a + 7b chia hết cho 31. Kết hợp với (1) đc: 5(6a + 11b) chia hết cho 31

Mà ƯCLN(5,31) = 1

=> 6a + 11b chia hết cho 31

Vậy : 6a + 11b chia hết cho 31 <=> a + 7b chia hết cho 31

 

30 tháng 12 2015

mk ghét chứng minh lắm bn xem trong câu hỏi tương tự có k

10 tháng 2 2019

Vì a-b chia hết cho 6 

nên (a-bchia hết cho 6 

=>> a+5a chia hết cho 6

10 tháng 2 2019

Vì a-b chia hết cho 6 nên 5(a-b)=5a-5b chia hết cho 6.

Mà 6b chia hết cho 6 với mọi số nguyên b.

Do vậy 5a-5b-6b chia hết cho 6 => 5a - 11b chia hết cho 6 (đpcm).

\(\left(a+2b\right)⋮7\Rightarrow100\left(a+2b\right)⋮7\)

\(\Rightarrow100a+200b⋮7\)

\(\Leftrightarrow100a+200b-100a-11b⋮7\)

\(\Rightarrow189b⋮7\)

\(\text{Vậy }100a+11b⋮7\)

22 tháng 11 2018

Ta có ;

100a + 11b

= 2a + 98a + 4b + 7b

= ( 2a + 4b ) + ( 98a + 7b )

= 2 ( a + 2b ) + 7 ( 14a + b ) chia hết cho 7    

(Do a + 2b chia hết cho 7=>2(a + 2b) chia hết cho 7 và 7 chia hết cho 7=>7 ( 14a + b ) chia hết cho 7 =>  2 ( a + 2b ) + 7 ( 14a + b ) chia hết cho 7 )

=> 100a + 11b chia hết cho 7 ( đpcm )

1 tháng 10 2023

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

1 tháng 10 2023

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3

DD
16 tháng 1 2021

a) \(a+8b=\left(a+b\right)+7b⋮7\).

b) \(3a-11b=3\left(a+b\right)-14b⋮7\).

c) \(5a-9b-2009=5\left(a+b\right)-14b+7.287⋮7\)