Cho hàm số y=x3-12x-6 có đồ thị (C) và điểm A(m;0). Có bao nhiêu số nguyê m ∈ - 5 ; 5 để qua A ta kẻ được 3 tiếp tuyến tới đồ thị (C).
A. 1
B. 2
C. 3
D. 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
y ' = 3 x 2 + 6 x + m 2 . Hàm số có hai điểm cực trị => y’=0 có hai nghiệm phân biệt <=> Δ ' = 3 2 - 3 . m 2 > 0 <=> - 3 < m < 3
Chia y cho y’ ta được:
Giả sử x 1 , x 2 là hai nghiệm phân biệt của y’=0.
Phương trình đường thẳng đi qua hai điểm cực trị có dạng
(d) có vectơ pháp tuyến là
Vì hai điểm cực trị đối xứng với nhau qua (Δ) nên (d) ⊥ (Δ)
Thử lại khi m=0 ta có: y = x 3 + 3 x 2 ; y ' = 3 x 2 + 6 x ; y ' ' = 6 x + 6
y''(0) = 6 > 0; y''(-2) = -6 < 0
Tọa độ hai điểm cực trị của đồ thị hàm số là O(0;0), A(-2;4)
Trung điểm của OA là I(-1;2).
Ta thấy I(-1,2) không thuộc đường thẳng (Δ) . Vậy không tồn tại m.
Đường thẳng AC qua A ( -2;3 ); C ( 4;1 ) nhận A C → = 6 ; - 2 làm vec tơ chỉ phương nên có phương trình là: x + 2 6 = y - 3 - 2 ⇔ y = - 1 3 x + 7 3
Tọa độ giao điểm của AC và BD là nghiệm của hệ phương trình 3 x - y - 1 = 0 y = - 1 3 x + 7 3 ⇔ x = 1 y = 2
Để ý rằng A C ⊥ B D và I là trung điểm AC.
Khi đó ABCD là hình thoi thì I ( 1;2 ) là trung điểm của BD.
Phương trình hoành độ giao điểm của (C) và d là: 2 x + 1 2 x - m = 3 x - 1 ⇔ 6 x 2 - 3 m + 4 x + m - 1 = 0
Do ∆ = 3 m + 4 2 - 4 . 6 m - 1 = 9 m 2 + 24 > 0 , ∀ m nên d luôn cắt (C) tại hai điểm phân biệt B và D.
Gọi x 1 , x 2 là hai nghiệm của phương trình (*). Theo định lý Viet ta có x 1 + x 2 2 = 3 m + 4 12
Đáp án A
Để I là trung điểm của BD thì 3 m + 4 12 = 1 ⇔ m = 8 3
Đáp án A