tim x biet (x^2-1)(x^2-3)(x^2-5)(x^2-7)<=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)=>x-1;x-3 \(\in\)Ư(-5)={-1;-5;1;5}
còn lại thử từng TH nhé
b)\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
c)=>x2-4;x2-19 trái dấu
Ta có:x^2-4-(x^2-19)=x^2-4-x^2+19=15 >0
\(\Rightarrow\orbr{\begin{cases}x^2-4>0\\x^2-19< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x^2>4\\x^2< 19\end{cases}}\)
Ta có:4<x^2<19
=>x^2\(\in\){9;16}
=>x\(\in\){3;4}
a) \(x^2+1>0\) thực tế lớn 1 không cần vì đang so sánh Với 0
=> để VT <0 cần (x-3)<0=> x<3 {âm nhân dương--> âm)
b) Lập bảng hợp lý nhất cho lớp 6
x | -VC | -7 | 4 | +VC | |
x+7 | - | 0 | + | + | + |
x-4 | - | - | - | 0 | + |
(x+7)(x-4) | + | 0 | - | 0 | + |
b) vậy x<-7 hoạc x>4 thì VT>0
c) x^2+5> 0 mọi x
=> chỉ xét x^2-16 =(x-4)(x+4)
lập bảng như (b)=> x<-4 hoac x>4
a) Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+1\ge1\forall x\)
\(\Rightarrow\left(x-2\right)\left(x^2+1\right)>0\)\(\Leftrightarrow x-2>0\)\(\Leftrightarrow x>2\)
Vậy \(x>2\)
b) \(\left(x+5\right)\left(2-x\right)< 0\)
TH1: \(\hept{\begin{cases}x+5>0\\2-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-5\\2< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-5\\x>2\end{cases}}\Leftrightarrow x>2\)
TH2: \(\hept{\begin{cases}x+5< 0\\2-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -5\\2>x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -5\\x< 2\end{cases}}\Leftrightarrow x< -5\)
Vậy \(x< -5\)hoặc \(x>2\)
a, \(\left(x-2\right).\left(x^2+1\right)>0\) \(\Rightarrow x-2>0\) (vì \(x^2+1>0\forall x\inℤ\) )
\(\Rightarrow x>2\)
b, \(\left(x+5\right).\left(2-x\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x>2\\x< -5\end{cases}}\)