Tìm x thuộc Z biết
x14+x24+x34+...+x104=2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương trình hoành độ giao điểm của (C) và Ox là x 4 − m x 2 + m = 0 * .
Đặt t = x 2 ≥ 0 khi đó * ⇔ f t = t 2 − m t + m = 0
Để (*) có 4 nghiệm phân biệt ⇔ f t = 0 có 2 nghiệm dương phân biệt t 1 , t 2
Khi đó, gọi t 1 , t 2 t 1 < t 2 là hai nghiệm phân biệt của f t = 0
Suy ra:
x 1 = − t 2 ; x 2 = − t 1 ; x 3 = t 1 ; x 4 = t 2 ⇒ x 1 4 + x 2 4 + x 3 4 + x 4 4 = 2 t 1 2 + t 2 2 = 30
Mà t 1 + t 2 = m t 1 t 2 = m
⇒ t 1 2 + t 2 2 = t 1 + t 2 2 − 2 t 1 t 2 = m 2 − 2 m
suy ra m > 4 m 2 − 2 m = 15 ⇔ m = 5.
36/11 x 22/17 x 51/72
= 36 x 22 x 51/11 x 17 x 72
= 36 x 2 x 11 x 17 x 3/11 x 17 x 36 x 2
= 3
22/16 x 64/55 x 27/13
= 22 x 64 x 27/16 x 55 x 13
=2 x 11 x 16 x 4 x 27/16 x 5 x 11 x 13
= 216/65
36 x 48/12 x 24 + 18 x 104/36 x 4
= 12 x 3 x 2 x 24/12 x 24 + 18 x 13 x 2 x 4/ 18 x 2 x 4
= 6 + 13
= 19
=
Đáp án cần chọn là: B
x∈{−1;0;1;2;3;4;5}
5 6 + − 7 8 ≤ x 24 ≤ − 5 12 + 5 8 − 1 24 ≤ x 24 ≤ 5 24 − 1 ≤ x ≤ 5
- 7 8 + 5 6 < x 24 ≤ 5 8 + - 5 12
⇔ - 21 24 + 20 24 ≤ x 24 ≤ 15 24 + - 10 24 ⇔ - 1 24 ≤ x 24 ≤ 5 24
-1 ≤ x ≤ 5 mà x ∈ Z. Do đó: x ∈ { -1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 5 }
x 1 4 − x 2 4 = x 1 2 + x 2 2 x 1 2 − x 2 2 = x 1 + x 2 2 − 2 x 1 x 2 x 1 − x 2 x 1 + x 2
Mà x 1 − x 2 = ( x 1 − x 2 ) 2 = ( x 1 + x 2 ) 2 − 4 x 1 x 2
= ( 2 m + 2 ) 2 − 4 ( m 2 + 2 ) = 8 m − 4
Suy ra x 1 4 − x 2 4 = ( 2 m + 2 ) 2 − 2 ( m 2 + 2 ) 8 m − 4 2 m + 2
= ( 2 m 2 + 8 ) 8 m − 4 2 m + 2
Suy ra x 1 4 − x 2 4 = 16 m 2 + 64 m
⇔ ( 2 m 2 + 8 m ) 8 m − 4 2 m + 2 = 16 m 2 + 64 m
⇔ ( m 2 + 4 m ) ( 8 m − 4 2 m + 2 − 8 = 0 ⇔ m 2 + 4 m = 0 ( 1 ) 8 m − 4 2 m + 2 = 8 ( 2 )
Ta có (1) ⇔ m = 0 m = − 4 (loại)
⇔ m = 1 (thỏa mãn (*)
Vậy m = 1 thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: C
Lời giải:
Theo định lý Viet:
$x_1+x_2=3$
$x_1x_2=-7$
Khi đó:
$A=\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_2-1+x_1-1}{(x_1-1)(x_2-1)}$
$=\frac{(x_1+x_2)-2}{x_1x_2-(x_1+x_2)+1}=\frac{3-2}{-7-3+1}=\frac{-1}{9}$
$E=x_1^4+x_2^4=(x_1^2+x_2)^2-2(x_1x_2)^2=[(x_1+x_2)^2-2x_1x_2]^2-2(x_1x_2)^2$
$=[3^2-2(-7)]^2-2(-7)^2=431$
Để pt có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4-4\left(m-1\right)\ge0\)\(\Leftrightarrow2\ge m\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(1\right)\\x_1x_2=m-1\end{matrix}\right.\)
\(x_1^4-x_1^3=x_2^4-x_2^3\)
\(\Leftrightarrow\left(x_1^4-x_2^4\right)-\left(x_1^3-x_2^3\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2\right)-\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left[2\left(x_1^2+x_2^2\right)-x_1^2-x_1x_2-x_2^2\right]=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)=0\)
\(\Leftrightarrow x_1-x_2=0\) (2) ( vì \(x_1^2-x_1x_2+x_2^2>0;\forall x,y\))
Từ (1) (2) \(\Rightarrow x_1=x_2=1\)
\(\Rightarrow x_1x_2=m-1=1\) \(\Leftrightarrow m=2\) (Thỏa)
Vậy...