So sánh 4/9........8/8
7/3.........4/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ là : 1/2 < 2/3 < 3/4 < 4/5 < 5/6 < 6/7 < 7/8 < 8/9 < 9/10
Bài làm
-)
\(-\frac{9}{4}=\frac{-9\cdot3}{4\cdot3}=\frac{-27}{12}\)
\(\frac{1}{3}=\frac{1\cdot4}{3\cdot4}=\frac{4}{12}\)
Vì -27 < 4 => -27/12 < 4/12
Do đó: \(-\frac{9}{4}< \frac{1}{3}\)
-)
\(-\frac{8}{3}=\frac{-8\cdot7}{3\cdot7}=\frac{-56}{21}\)
\(\frac{4}{-7}=\frac{4\cdot3}{-7\cdot3}=\frac{12}{-21}=\frac{12\cdot-1}{-21\cdot-1}=\frac{-12}{21}\)
Vì -56 < -12 => -56/21 < -12/21
Do đó: \(-\frac{8}{3}< \frac{4}{-7}\)
-)
\(\frac{9}{-5}=\frac{9\cdot2}{-5\cdot2}=\frac{18}{-10}=\frac{18\cdot-1}{-10\cdot-1}=\frac{-18}{10}\)
\(\frac{7}{-10}=\frac{7\cdot-1}{-10\cdot-1}=\frac{-7}{10}\)
Vì -18 < -7 => -18/10 < -7/10
Do đó: \(\frac{9}{-5}< \frac{7}{-10}\)
a) Ta có:
\(\dfrac{8}{9}=\dfrac{40}{45}\)
\(\dfrac{7}{5}=\dfrac{63}{45}\)
\(\Rightarrow\dfrac{8}{9}< \dfrac{6}{5}\left(\dfrac{40}{45}< \dfrac{63}{45}\right)\)
b) Ta có:
\(\dfrac{3}{4}=\dfrac{15}{20}\)
\(\dfrac{4}{5}=\dfrac{16}{20}\)
\(\Rightarrow\dfrac{3}{4}< \dfrac{4}{5}\left(\dfrac{15}{20}< \dfrac{16}{20}\right)\)
Câu `5`
`a)` Ta có:
`8/9 < 1 ; 7/5>1`
Vì: `8/9 < 1 < 7/5` nên `8/9 < 7/5`
`b)3/4= 15/20`
`4/5 = 16/20`
Vì: `15/20 < 16/20` nên `3/4<4/5`
1. A - B = 40+ 3/8 + 7/82 + 5/83 + 32/85 - (24/82 + 40+ 5/82 + 40/84 + 5/84 )
= 40.85/85 + 3.84/85 + 7.83/85 + 5.82/85 + 32/85 - 24.83/85 - 40.85/85 - 5.83/85 - 40.8/85 - 5.8/85
= 40.85/85 + 24.83/85 + 7.83/85 + 5.82/85 + 32/85 - 24.83/85 - 40.85/85 - 5.83/85 - 40.8/85 - 5.8/85
= 7.83/85 + 5.82/85 + 32/85 - 5.83/85 - 40.8/85 - 5.8/85
= 7.83/85 + 5.82/85 -8/85 - 5.83/85 - 40.8/85
= 2.83/85 + 5.82/85 - 40.8/85 - 8/85
= 2.83/85 + 40.8/85 - 40.8/85 - 8/85
= 2.83/85 - 8/85 > 0
Vay A > B
4/9 <1
8/8 =1
=> 4/9 < 8/8
7/3>1
4/5 <1
=> 7/3> 4/5
\(\dfrac{4}{9}\) ...\(\dfrac{8}{8}\)
\(\dfrac{4}{9}\) < 1
\(\dfrac{8}{8}\) = 1
vậy \(\dfrac{4}{9}\) < \(\dfrac{8}{8}\) ( phương pháp so sánh với 1)
\(\dfrac{7}{3}\) > 1
\(\dfrac{4}{5}\) < 1
\(\dfrac{7}{3}\) > \(\dfrac{4}{5}\)