Từ hai trong ba thẻ số 7, 4, 5, hãy lập tất cả các số chẵn và các số lẻ có hai chữ số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chẵn : 3948; 3984; 9348; 9384
Số lẻ : 4839; 4893; 8439; 8493
Số tự nhiên chẵn gồm 5 chữ số khác nhau và đúng hai chữ số lẻ có:
· Chọn 2 chữ số lẻ có cach; chọn 3 chữ số chẵn có cách
· Gọi số có 5 chữ số thỏa mãn đề bài là .
· Nếu a5 = 0 thì có 4! Cách chọn .
· Nếu a5 ≠ 0 thì có 2 cách chọn a5 từ 3 số chẵn đã chọn; khi đó có 3 cách chọn a1 ; 3 cách chọn a2 ; 2 cách chọn a3 và 1 cách chọn a1 .
· Theo quy tắc cộng và nhân có 10.10.(1.4!+2.3.3.2.1)=6000 số
Số tự nhiên chẵn gồm 5 chữ số khác nhau và có đúng hai chữ số lẻ đứng cạnh nhau có số.
Suy ra có 6000-3120=2880 số cần tìm.
Chọn D.
Để lập được nhiều nhất các số lẻ có hai chữ số từ 5 thẻ số 1, 2, 3, 4, 5, Đăng cần chọn ba thẻ số 1, 3 và 5. Khi đó, ta có thể lập được 9 số lẻ có hai chữ số, đó là: 11, 13, 15, 31, 33, 35, 51, 53, 55.
Các số cần tìm có dạng \(\overline{abcdef}\) (a ≠ 0).
Theo đề, a = 5; b = 0; c + d = e + f = 5; và f chia hết cho 2.
c và d có thể lần lượt bằng 1 và 4; 4 và 1; 2 và 3; 3 và 2.
Khi đó e và f lần lượt bằng 3 và 2; 3 và 2; 1 và 4; 1 và 4.
Vậy các số cần tìm là 501432; 504132; 502314; 503214.
Chọn A
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng a b c d e ¯ (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là
(để ý: có 2 cách xếp 3 chữ số chẵn thỏa đề {a,b,c}, {c,d,e})
+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng 0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là
(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b,c}).
Suy ra, số các số tự nhiên thỏa đề ra là
Chọn C
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các số tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng a b c d e ¯ (a có thể bằng 0), có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ là
(để ý: có 1 cách xếp 3 chữ số chẵn thỏa đề {a,c,e}).
+ Số các số tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng 0 b c d e ¯ , có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ là
(để ý: có 1 cách xếp 3 chữ số chẵn thỏa đề {0,c,e}).
Suy ra, số các số tự nhiên thỏa đề ra là
a: Tổng các số lẻ từ 3 đến 10 là:
3+5+7+9=24
Tổng các số lẻ từ -15 đến -3 là:
-15-13-11-9-7-5-3=-63
b: Số nguyên chẵn lớn nhất có 1 chữ số là 8
Số nguyên chẵn nhỏ nhất có 2 chữ số là -10
Tổng là 8+(-10)=-2
a. Tổng tất cả các số lẻ từ 3 đến 10 là:
\(3+5+7+9=24\)
Tổng tất cả các số lẻ từ -15 đến -3 là:
\(-15+\left(-13\right)+\left(-11\right)+\left(-9\right)+\left(-7\right)+\left(-5\right)+\left(-3\right)\)
\(=\left[-15+\left(-5\right)\right]+\left[\left(-13\right)+\left(-7\right)\right]+\left[\left(-9\right)+\left(-11\right)\right]-3\)
\(=-20+\left(-20\right)+\left(-20\right)-3\)
\(=-20\cdot3-3\)
\(=-63\)
b. Số nguyên chẵn lớn nhất có một chữ số: 8
Số nguyên chẵn nhỏ nhất có 2 chữ số: -10
Tổng hai số trên là: \(8+\left(-10\right)=-2\)
#Ayumu
Vì có 3 số lẻ là 1,3,5, nên ta tạo được 6 cặp số kép: 13;31;15;51;35;53
Gọi A là tập các số gồm 4 chữ số được lập từ X={0;13;2;4;6}.
Gọi A1,A2,A3 tương ứng là số các số tự nhiên lẻ gồm 4 chữ số khác nhau được lập từ các chữ số của tập X và 13 đứng ở vị trí thứ nhất, thứ hai và thứ ba.
Ta có:
Nên
Vậy số các số cần lập là: 6.60=360 số.
Chọn A.
Đáp án A
Goi A là số tự nhiên có hai chữ số lẻ khác nhau lấy từ các số 1, 2, 3, 4, 5, 6 số cách chọn được A là A 3 2 = 6 . Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa A và ba trong 4 chữ số 0; 2; 4; 6. Gọi a b c d ; a, b, c, d ∈ {A, 0, 2, 4, 6} là số thỏa mãn yêu cầu bài toán.
*TH1: Nếu d = 0 số cách lập là: 1 A 4 3 = 24 .
*TH2: Nếu d ≠ 0 thì d có 3 cách chọn, a có 3 cách chọn, b có 3 cách chọn, c có 2 cách chọn nên số cách lập là: 3.3.3.2 = 54
Số cách lập: 6(24+54) = 468 cách.
Từ hai trong ba thẻ số 7, 4, 5 ta lập được
- Các số chẵn có hai chữ số: 74; 54
- Các số lẻ có hai chữ số: 47; 45; 57; 75
Từ hai trong ba thẻ số 7, 4, 5 ta lập được
- Các số chẵn có hai chữ số: 74; 54
- Các số lẻ có hai chữ số: 47; 45; 57; 75