tìm tất cả các số nguyên dương x,y thỏa mãn x^2 - 2y^2 = 9 và 50<x<100 HELP ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết pt trên thành pt bậc 2 đối với x:
\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)
(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)
\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)
Ta cần có \(\Delta\) là số chính phương.Tức là:
\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)
\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)
Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-
(x;y;z)={(6;9;12);(8;12;16)}(x;y;z)={(6;9;12);(8;12;16)}
Giải thích các bước giải:
2z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=02z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0
⇒⎧⎪⎨⎪⎩2z−4x=03x−2y=04y−3z=0⇒y=34z⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z
mà 200<y2+z2<450200<y2+z2<450
⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288
Vì z là số nguyên dương ⇒√128<z<√288⇒128<z<288
⇒z∈{12;13;14;15;16}⇒z∈{12;13;14;15;16}
mà y là số nguyên dương và y=34zy=34z
⇒z∈{12;16}⇒z∈{12;16}
Thế vào y=34zy=34z và 2z−4x=02z-4x=0
+) Với z=12⇒y=34.12=6z=12⇒y=34.12=6
2.12−4x=0⇒x=62.12-4x=0⇒x=6
Với z=16⇒y=34.16=12z=16⇒y=34.16=12
2.16−4x=0⇒x=82.16-4x=0⇒x=8
Vậy ta có các cặp nghiệm là: (x;y;z)={(6;9;12);(8;12;16)}
(x;y;z)={(6;9;12);(8;12;16)}(x;y;z)={(6;9;12);(8;12;16)}
Giải thích các bước giải:
2z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=02z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0
⇒⎧⎪⎨⎪⎩2z−4x=03x−2y=04y−3z=0⇒y=34z⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z
mà 200<y2+z2<450200<y2+z2<450
⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288
Vì z là số nguyên dương ⇒√128<z<√288⇒128<z<288
⇒z∈{12;13;14;15;16}⇒z∈{12;13;14;15;16}
mà y là số nguyên dương và y=34zy=34z
⇒z∈{12;16}⇒z∈{12;16}
Thế vào y=34zy=34z và 2z−4x=02z-4x=0
+) Với z=12⇒y=34.12=6z=12⇒y=34.12=6
2.12−4x=0⇒x=62.12-4x=0⇒x=6
Với z=16⇒y=34.16=12z=16⇒y=34.16=12
2.16−4x=0⇒x=82.16-4x=0⇒x=8
Vậy ta có các cặp nghiệm là: (x;y;z)={(6;9;12);(8;12;16)}
\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)
\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)
\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)
\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)
\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương