Câu 6: Cho tam giác ABC nhọn, (AB < AC), Vẽ (O; R) đường kính BC cắt các cạnh AB, AC lần lượt tại F, E. các dây BE, CF cắt nhau tại H, AH cắt BC tại D. Đường thẳng EF cắt BC tại Q.
a) Chứng minh: tứ giác AEHF nội tiếp
b) Đoạn thẳng AH cắt (O) tại P, cắt EF tại K, DE cắt CF tại N, gọi I là trung điểm AH, CI cắt (O) tại điểm thứ 2 là M. Chứng minh: DN.EF = HF.CN và B, M, K thẳng hàng
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
23 tháng 3 2016
1.
Ta có : AC<AD (vì : D là tia đối của tia BC )
=> HD<HC
3.
Ta có : AB+AC>AH (vì : tog 2 cah cua tam giác luôn lớn hơn cah con lại)
Mà : 1/2AH<AB+AC
=> AB+AC>2AH
4.
Ta có : ko hiu
1 tháng 3 2023
a: Xet (O) có
ΔACD nội tiếp
AD là đường kính
=>ΔACD vuông tại C
Xét ΔACD vuông tại C và ΔAHB vuông tại H có
góc ADC=góc ABH
=>ΔACD đồng dạng với ΔAHB
=>AC/AH=AD/AB và góc CAD=góc HAB
=>AC*AB=AD*AH và góc CAH=góc BAD
b: Xét tứ giác ABHE có
góc AHB=góc AEB=90 độ
=>ABHE là tứ giác nội tiếp
=>góc AHE=góc ABE
=>góc AHE+góc HAC=90 độ
=>HE vuông góc AC
Xét tứ giác AHFC có
góc AHC=góc AFC=90 độ
=>AHFC là tứ giác nội tiếp
=>góc HFA=góc HCA
=>góc HFA+góc BAD=90 độ
=>HF vuông góc AB
a: Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó:ΔBFC vuông tại F
=>CF\(\perp\)AB tại F
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)AC tại E
Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
nên AEHF là tứ giác nội tiếp