K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2015

a)Ta có: p2-1=(p-1).(p+1)

Vì p là số nguyên tố lớn hơn 3

=>p chia 3 dư 1 hoặc 2

*Xét p chia 3 dư 1=>p-1 chia hết cho 3=>(p-1).(p+1) chia hết cho 3

=>p2-1 chia hết cho 3

*Xét p chia 3 dư 2=>p+1 chia hết cho 3=>(p-1).(p+1) chia hết cho 3

=>p2-1 chia hết cho 3

Vậy p2-1 chia hết cho 3

a)Ta có: p2-q2=p2-1-q2+1=(p2-1)-(q2+1)

Từ câu a

=>p2-1 chia hết cho 3

    q2-1 chia hết cho 3

=>(p2-1)-(q2+1) chia hết cho 3

Vậy p2-q2 chia hết cho 3

4 tháng 6 2016

Dễ thấy với a,b >0 thì (a+b)/2 ≥ √ab <=> 1/(a+b) ≤ 1/4 (1/a +1/b) 
Áp dụng bất đẳng thức Cauchy ta được 
1/(a+2b+3c)=1/[(a+c)+2(b+c)]≤ 1/4[1/(a+c)+1/2(b+c)] (lại áp dụng tiếp được) 
≤ 1/16a+1/16c+1/32b+1/32c 
=1/16a+1/32b+3/32c 
Trường hợp này dấu "=" xảy ra <=> a+c=2(b+c);a=c;b=c <=> c= 0 mâu thuẩn giả thiết 
Do đó dấu "=" không xảy ra 
Thế thì 1/(a+2b+3c)<1/16a+1/32b+3/32c (1) 
Tương tự 1/( b+2c+3a)<1/16b+1/32c+3/32a (2) 
1/ ( c+2a+3b) < 1/16c+1/32a+3/32b (3) 
Cộng (1)(2)(3) cho ta 
1/( a+2b+3c) + 1/( b+2c+3a) + 1/ ( c+2a+3b) <(1/16+1/32+3/32)(1/a+1/b+1/c) 
=3/16*(ab+bc+ca)abc= 3/16

tk nha mk trả lời đầu tiên đó!!!