K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

quy đồng lên là làm được thôi

6 tháng 1 2016

ban giup minh di. giai day du cho minh di

23 tháng 10 2020

Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\)

Cần chỉ ra \(\frac{4}{\left(x+y\right)^2}\ge4\)

Ta có : \(x+y\le1\)

=> \(\left(x+y\right)^2\le1\)

=> \(\frac{1}{\left(x+y\right)^2}\ge1\)( nghịch đảo )

=> \(\frac{4}{\left(x+y\right)^2}\ge4\)( nhân 4 vào cả hai vế )

=> đpcm

Đẳng thức xảy ra <=> x = y = 1/2

24 tháng 7 2016

\(x+y+\frac{1}{2x}+\frac{2}{y}=\frac{x+y}{2}+\frac{x}{2}+\frac{y}{2}+\frac{1}{2x}+\frac{2}{y}=\left(\frac{x}{2}+\frac{1}{2x}\right)+\left(\frac{y}{2}+\frac{2}{y}\right)+\frac{1}{2}\left(x+y\right)\)

Vì x\(\ge0\)  => \(\frac{x}{2}\ge0;\frac{1}{2x}\ge0\). Áp dụng bđt cô si cho 2 số dương ta có:

             \(\frac{x}{2}+\frac{1}{2x}\ge2\sqrt{\frac{x}{2}\cdot\frac{1}{2x}}=2\sqrt{\frac{1}{4}}=2\cdot\frac{1}{2}=1\)

Chứng minh tt ta có:

             \(\frac{y}{2}+\frac{2}{y}\ge2\)

=> \(x+y+\frac{1}{2x}+\frac{2}{y}\ge1+2+\frac{1}{2}\cdot3=\frac{9}{2}\)

a) Áp dụng bất đẳng thức Cauchy-Schwarz , ta được
\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=1\)(đpcm)

4 tháng 7 2020

Bạn có thể tham khảo ở đây: https://olm.vn/hoi-dap/detail/99503384500.html
Thông tin đến bạn!

10 tháng 6 2018
https://i.imgur.com/tLLo147.jpg