Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2014-2012}{2012.2013.2014}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{2012.2013}-\frac{1}{2013.2014}$
$=\frac{1}{1.2}-\frac{1}{2013.2014}< \frac{1}{2}$
$\Rightarrow A< \frac{1}{2}:2$
Hay $A< \frac{1}{4}$
a, A= \(5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)
\(A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=5\left(1-\dfrac{1}{100}\right)\)
\(A=5.\dfrac{99}{100}=\dfrac{99}{20}.\)
b, \(C=1.2.3+2.3.4+...+8.9.10\)
\(4C=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)\(4C=8.9.10.11\)
\(C=\dfrac{8.9.10.11}{4}=1980.\)
c, https://hoc24.vn/hoi-dap/question/384591.html
Câu này bạn vào đây mình đã giải câu tương tự nhé.
\(1)A=\dfrac{5}{1.2}+\dfrac{5}{2.3}+...+\dfrac{5}{99.100}\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=5\cdot\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{99}{20}\)
A=\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{2014\cdot2015\cdot2016}=\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{2014\cdot2015}-\dfrac{1}{2015\cdot2016}\right)=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2015}\cdot\dfrac{1}{2016}\right)=\dfrac{1}{4}-\dfrac{1}{2\cdot2015\cdot2016}< \dfrac{1}{4}\)
Vậy A<\(\dfrac{1}{4}\)
---bé hơn hoặc bằng tức là chỉ cần xảy ra 1 khả năng cũng thõa mãn nhé---
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)
\(A=\frac{1}{4.6}+\frac{1}{10.12}+\frac{1}{18.20}+...+\frac{1}{810.812}\)
.......
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.....+\frac{1}{27.28.29.30}\)
\(3A=3.\left(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+......+\frac{1}{27.28.29.30}\right)\)
\(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+..........+\frac{3}{27.28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+........+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}\)
\(3A=\frac{1}{6}-\frac{1}{24360}\)
\(3A=\frac{1353}{8120}\)
\(A=\frac{1353}{8120}:3\)
\(A=\frac{451}{8120}\)
2/1*2*3+2/3*4*5+...+2/2009*2010*2011
A=2/2*(1/1-1/2-1/3+1/2-1/3-1/4+1/4-1/5-1/6+...+1/2009-1/2010-1/2011
A=1*(1-1/2011)
A=1*2010/2011=2010/2011
suy ra: 2010/2011<1
suy ra 1/2 của 1 lớn hơn 2010/2011
VẬY A NHỎ HƠN 1/2
VẬY
Ta có: \(\frac{-3}{1.2.3}+\frac{-3}{2.3.4}+\frac{-3}{3.4.5}+...+\frac{-3}{18.19.20}\)
\(=\frac{-3}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{18.19.20}\right)\)
\(=\frac{-3}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{-3}{2}\left(\frac{1}{2}-\frac{1}{19.20}\right)=\frac{-3}{2}.\frac{189}{380}=\frac{-567}{760}\)
\(\dfrac{1\cdot2\cdot3+2\cdot4\cdot6+4\cdot8\cdot12}{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20}\\ =\dfrac{1\cdot2\cdot3+2\cdot1\cdot2\cdot2\cdot2\cdot3+4\cdot1\cdot4\cdot2\cdot4\cdot3}{1\cdot3\cdot5+2\cdot1\cdot2\cdot3\cdot2\cdot5+4\cdot1\cdot4\cdot3\cdot4\cdot5}\\ =\dfrac{1\cdot2\cdot3\cdot\left(1+2^3+4^3\right)}{1\cdot3\cdot5\cdot\left(1+2^3+4^3\right)}\\ =\dfrac{1\cdot2\cdot3}{1\cdot3\cdot5}\\ =\dfrac{6}{15}\)
A=1.2+2.3+3.4+4.5+...+2013.2014
3A=1.2.3+2.3.3+3.4.3+...+2013.2014.3
3A=1.2.3+2.3(4-1)+3.4(5-2)+...+2013.2014(2015-2012)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2013.2014.2015-2012.2013.2014
3A=2013.2014.2015
A=\(\dfrac{2013.2014.2015}{3}\)
Chúc bạn học tốt nhé!