K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBMO có \(\widehat{BMO}+\widehat{MBO}+\widehat{MOB}=180^0\)

=>\(\widehat{BMO}+\widehat{MOB}=180^0-60^0=120^0\)(1)

\(\widehat{MOB}+\widehat{MON}+\widehat{NOC}=180^0\)

=>\(\widehat{MOB}+\widehat{NOC}=180^0-60^0=120^0\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{BMO}=\widehat{CON}\)

Xét ΔBMO và ΔCON có

\(\widehat{BMO}=\widehat{CON}\)

\(\widehat{MBO}=\widehat{OCN}\left(=60^0\right)\)

Do đó: ΔBMO~ΔCON

b: ΔBMO~ΔCON

=>\(\dfrac{OM}{ON}=\dfrac{BM}{CO}=\dfrac{BM}{BO}\)

c:

\(\dfrac{OM}{ON}=\dfrac{BM}{BO}\)

=>\(\dfrac{BM}{OM}=\dfrac{BO}{ON}\)

Xét ΔBMO và ΔOMN có

\(\dfrac{BM}{OM}=\dfrac{BO}{ON}\)

\(\widehat{MBO}=\widehat{MON}\left(=60^0\right)\)

Do đó: ΔBMO~ΔOMN

=>\(\widehat{BMO}=\widehat{OMN}\)

=>MO là phân giác của góc BMN

15 tháng 1 2022

Answer:

C O B A N M

a) Ta có:

Góc NOC = 180 độ - góc MON - góc MOB

Góc NOC = 180 độ - góc MBO - góc MOB

Góc NOC = góc BMO

Xét tam giác MBO và tam giác OCN

Góc MBO = góc OCN = 60 độ 

Góc BMO = góc NOC

=> Tam giác MBO ~ tam giác OCN (g-g) 

=> \(\frac{MO}{ON}=\frac{BO}{CN}=\frac{MB}{OC}\)

b) Do O là trung điểm BC => OC = BO

\(\Rightarrow\frac{MO}{ON}=\frac{MB}{OB}\)

\(\Rightarrow\frac{MO}{MB}=\frac{ON}{OB}\)

\(\Rightarrow\frac{OB}{NO}=\frac{MB}{MO}\)

Xét tam giác OBM và tam giác NOM

Góc OBM = góc NOM = 60 độ

\(\frac{MB}{MO}=\frac{OB}{NO}\)

=> Tam giác OBM ~ tam giác NOM (c-g-c)

=> Góc OMB = góc OMN

=> MO là tia phân giác góc BMN

26 tháng 4 2016

mk cũng đang vướng bài này, ai biet thi chi luon mk vs

25 tháng 9 2017

uh,mk nghĩ mãi hông ra

17 tháng 10 2015

giúp với http://olm.vn/hoi-dap/question/239353.html

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0