Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lời giải tại đường link dưới nhé
Câu hỏi của Anh Aries - Toán lớp 8 - Học toán với OnlineMath
gọi vận tốc dự định đi quãng đường AB = x km/giờ (x>0)
thời gian dự định đi quãng đường AB = 60/x
--> vận tốc đi nửa đường đầu (đi 30km đầu) = x + 10
thời gian đi nửa đường đầu = 30/(x + 10)
--> vận tốc đi nửa đường sau (đi 30 km sau) = x - 6
thời gian đi nửa đường sau = 30/(x -6)
Theo đề ta có
30/(x + 10) + 30/(x - 6) = 60/x
1/(x + 10) + 1/(x - 6) = 2/x
x(x-6) + x(x+10) = 2(x-6)(x+10)
x^2 - 6x + x^2 +10x = 2(x^2 + 4x - 60)
2x^2 + 4x = 2x^2 + 8x - 120
4x = 120
x = 30 (thỏa)
Vậy thời gian dự định đi quãng đường AB là t = 60/x = 60/30 = 2 giờ
Gọi thời gian dự định đi hết quãng đường là x.
Độ dài quãng đường AB là: S = v.t = 40x
Nửa quãng đường là S/2 = 40x/2 = 20x.
Nửa quãng đường đầu đi vs vtốc dự định (40km/h)
=> Thời gian đi hết nửa quãng đường đầu là: t1 = S : v1 = 20x : 40 = 1/2x
Nửa quãng đường đầu đi vs vtốc tăng hơn dự định 10km/h (50km/h)
=> Thời gian đi hết nửa quãng đường sau là t2 = S : v2 = 20x : 50 = 2/5x
Tổng thời gian đi hết quãng đường là: t = t1 + t2 = 1/2x + 2/5x = 9/10x
Do thực tế đến B sớm hơn dự kiến 1h nên ta có: x - 9/10x = 1 => x = 10 (h)
=> Độ dài quãng đường AB là S = 40.10 = 400 (km).
Gọi vận tốc ô tô dự định đi quãng đường AB là x (km/h).
Có phương trình:
Giải ra được x = 30
Thời gian ô tô dự định đi là 2 giờ.
Gọi vận tốc của ô tô dự định là x (x>6)
=> Thời gian dự định là \(\frac{60}{x}\)
Nửa quãng đường đầu dài 30 km
Vận tốc đi nửa quãng đường đầu là x+10
=> Thời gian đi nửa quãng đường đầu là \(\frac{30}{x+10}\)
Vận tốc đi nửa quãng đường sau là x−6
=> Thời gian đi nửa quãng đường sau là \(\frac{30}{x-6}\)
Theo bài ra ta có phương trình:
\(\frac{30}{x+10}+\frac{30}{x-6}=\frac{60}{x}\)
Tự giải pt ra được x = 30 (TMĐK)
=> Thời gian ô tô dự định đi quãng đường AB là: \(\frac{60}{30}\)= 2h (CT tính thời gian = quãng đường/ vận tốc)
A)
Giải:
gọi vận tốc dự định đi quãng đường AB = x km/giờ (x>0)
thời gian dự định đi quãng đường AB = 60/x
--> vận tốc đi nửa đường đầu (đi 30km đầu) = x + 10
thời gian đi nửa đường đầu = 30/(x + 10)
--> vận tốc đi nửa đường sau (đi 30 km sau) = x - 6
thời gian đi nửa đường sau = 30/(x -6)
Theo đề ta có
30/(x + 10) + 30/(x - 6) = 60/x
1/(x + 10) + 1/(x - 6) = 2/x
x(x-6) + x(x+10) = 2(x-6)(x+10)
x^2 - 6x + x^2 +10x = 2(x^2 + 4x - 60)
2x^2 + 4x = 2x^2 + 8x - 120
4x = 120
x = 30 (thỏa)
Vậy thời gian dự định đi quãng đường AB là t = 60/x = 60/30 = 2 giờ
Gọi vận tốc ban đầu của ô tô là x(km/h)
(Điều kiện: x>0)
Thời gian ô tô đi 180km đầu tiên là: \(\dfrac{180}{x}\left(giờ\right)\)
Độ dài quãng đường còn lại là 400-180=220(km)
Vận tốc của ô tô khi đi trên quãng đường còn lại là:
x+10(km/h)
Thời gian ô tô đi 220km còn lại là \(\dfrac{220}{x+10}\left(giờ\right)\)
Thời gian đi hết quãng đường là 8 giờ nên ta có:
\(\dfrac{180}{x}+\dfrac{220}{x+10}=8\)
=>\(\dfrac{45}{x}+\dfrac{55}{x+10}=2\)
=>\(\dfrac{45x+450+55x}{x\left(x+10\right)}=2\)
=>2x(x+10)=100x+450
=>x(x+10)=50x+225
=>\(x^2-40x-225=0\)
=>(x-45)(x+5)=0
=>\(\left[{}\begin{matrix}x=45\left(nhận\right)\\x=-5\left(loại\right)\end{matrix}\right.\)
Vậy: vận tốc ban đầu của ô tô là 45km/h
Giải:
Gọi vận tốc ban đầu của ô tô là: \(x\) (km/h) ; \(x\) > 0
Vận tốc lúc sau của ô tô là: \(x+10\) (km/h)
Thời gian ô tô đi lúc đầu là: 180 : \(x\) (giờ)
Thời gian ô tô đi lúc sau là: (400 - 180) : (\(x+10\)) = \(\dfrac{220}{x+10}\)
Theo bài ra ta có phương trình:
\(\dfrac{180}{x}\) + \(\dfrac{220}{x+10}\) = 8
\(\dfrac{45}{x}\) + \(\dfrac{55}{x+10}\) = 2
45(\(x+10\)) + 55\(x\) = 2.\(x\) (\(x+10\))
45\(x\) + 450 + 55\(x\) = 2\(x^2\) + 20\(x\)
2\(x^2\) + 20\(x\) - 55\(x\) - 45\(x\) = 450
2\(x^2\) + (20\(x\) - 55\(x\) - 45\(x\)) = 450
2\(x^2\) + (- 35\(x\) - 45\(x\)) = 450
2\(x^2\) - 80\(x\) = 450
\(x^2\) - 40\(x\) = 225
\(x^2\) - 40\(x\) + 400 = 625
(\(x-20\))2 = 252
\(\left[{}\begin{matrix}x-20=25\\x-20=-25\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=25+20\\x=-25+20\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=45\\x=-5\end{matrix}\right.\)
\(x=-5\) < 0 (loại)
Vậy \(x=45\)
Kết luận:...