Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho hệ pt 3x-y=2m-1 và x+2y=3m+2
tìm m để hpt có nghiệm ( x;y) thỏa mãn \(^{x^2}\)+\(^{y^2}\)đạt GTNN
Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=3x-2m+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
Mặt khác: \(x^2+y^2=2m^2+2m+1=2\left(m^2+m+\dfrac{1}{2}\right)\)
\(=2\left(m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu bằng xảy ra \(\Leftrightarrow m+\dfrac{1}{2}=0\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
Ta có
3 x − y = 2 m + 1 x + 2 y = − m + 2 ⇔ 6 x − 2 y = 4 m + 2 x + 2 y = − m + 2 ⇔ 7 x = 3 m + 4 x + 2 y = − m + 2 ⇔ x = 3 m + 4 7 3 m + 4 7 + 2 y = − m + 2 ⇔ x = 3 m + 4 7 2 y = − 7 m + 14 7 − 3 m + 4 7 ⇔ x = 3 m + 4 7 y = − 5 m + 5 7
hệ phương trình có nghiệm duy nhất ( x ; y ) = 3 m + 4 7 ; − 5 m + 5 7
Để x – y = 1 thì 3 m + 4 7 − − 5 m + 5 7 = 1 ⇔ 8m – 1 = 7 ⇔ 8m = 8 m = 1
Vậy với m = 1 thì hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x − y = 1
Đáp án: C
\(HPT\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m+6\\x+2y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\x+2y=3m+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=m+1\\m+1+2y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=m\end{matrix}\right.\)
\(x^2+y^2=5\Leftrightarrow m^2+2m+1+m^2=5\\ \Leftrightarrow2m^2+2m-4=0\\ \Leftrightarrow m^2+m-2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
a)
Thay n = 2 vào hệ phương trình ta được
\(\begin{cases}3x-2y=7.2-1\\x-2y=-5.2-3\end{cases}\Leftrightarrow\hept{\begin{cases}3x-2y=13\\x-2y=-13\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x-x=13-\left(-13\right)\\3x-2y=13\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=26\\3x-2y=13\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=13\\3.13-13=2y\end{cases}\Leftrightarrow\hept{\begin{cases}x=13\\2y=26\end{cases}}\Leftrightarrow\hept{\begin{cases}x=13\\y=13\end{cases}}}\)
Vậy khi n = 2 hệ phương trình có nghiệm x = y = 13
b)
Ta có
\(\hept{\begin{cases}3x-2y=7n-1\\x-2y=-5n-3\end{cases}\Leftrightarrow\hept{\begin{cases}3x-x=7n-\left(-5n\right)-1-\left(-3\right)\\3x-2y=7n-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=12n+2\\3x-2y=7n-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6n+1\\2y=3\left(6n+1\right)-7n+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6n+1\\2y=11n+4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6n+1\\y=\frac{11}{2}n+2\end{cases}}\)
Vậy HPT có nghiệm \(\hept{\begin{cases}x=6n+1\\y=\frac{11}{2}n+2\end{cases}}\)
Theo bài ra ta có
\(x+5y-n=-2\)
\(\Leftrightarrow6n+1+5\left(\frac{11}{2}n+2\right)-n=-2\)
\(\Leftrightarrow6n+\frac{55}{2}n-n+1+10=-2\)
\(\Leftrightarrow\frac{65}{2}n=-2-1-10=-13\)
\(\Leftrightarrow n=-\frac{13.2}{65}=-\frac{2}{5}\)
Vậy \(n=-\frac{2}{5}\) là giá trị cần tìm
Mình làm phần c
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Theo bài ta có
\(x^2-y=\left(6n+1\right)^2-\left(\frac{11}{2}n+2\right)\)
\(=36n^2+12n+1-\frac{11}{2}n-2\)
\(=36n^2+\frac{13}{2}n-1\)
\(=\left[\left(6n\right)^2+2.6n.\frac{13}{24}+\frac{169}{576}\right]-1-\frac{169}{576}\)
\(=\left(6n+\frac{13}{24}\right)^2-\frac{745}{576}\ge-\frac{745}{576}\)
Dấu " = " xảy ra \(\Leftrightarrow\left(6n+\frac{13}{24}\right)^2=0\)
\(\Leftrightarrow6n+\frac{13}{24}=0\)
\(\Leftrightarrow n=-\frac{13}{144}\)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
số lẻ quá xem lại xem có đúng không nhé
Để pt có nghiệm khi duy nhất khi \(\frac{1}{2}\ne-\frac{2}{1}\)* luôn đúng *
Ta có : \(\hept{\begin{cases}x-2y=m+3\\2x+y=2m+1\end{cases}\Leftrightarrow\hept{\begin{cases}2x-4y=2m+6\\2x+y=2m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}-5y=5\\x-2y=m+3\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=m+1\end{cases}}}\)
Thay vào biểu thức trên ta có : \(3x+2y>3\Rightarrow3\left(m+1\right)-2>3\)
\(\Leftrightarrow3m+3-2>3\Leftrightarrow3m>2\Leftrightarrow m>\frac{2}{3}\)
Vì \(\dfrac{1}{3}\ne\dfrac{2}{2}\)
nên hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}x+2y=7\\3x+2y=2m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x+2y-x-2y=2m+1-7\\x+2y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2m-6\\2y=7-x\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m-3\\2y=7-m+3=-m+10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-3\\y=-0,5m+5\end{matrix}\right.\)
x+2=y
=>-0,5m+5=m-3+2=m-1
=>-1,5m=-6
=>m=4