Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C 6 8 H E D F K
a, Xét tam giác ABC và tam giác HBA ta có :
^BAC = ^AHB = 900
^B chung
Vậy tam giác ABC ~ tam giác HBA ( g.g )
b, Xét tam giác AHB và tam giác CHA ta có :
^AHB = ^CHA = 900
^ABH = ^HAC ( cùng phụ với ^BAH )
Vậy tam giác AHB ~ tam giác CHA ( g.g )
\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\)
B C A x y M N 6 8
Vì cậu chỉ nhờ làm phần d nên mk chỉ làm phần d thôi nhé!
Với lại đề của phần d cậu viết nhầm phải sửa thành: \(CM:S_{\Delta AMB}=\frac{9}{16}S_{\Delta ANC}\)nữa ạ!
Bài làm:
Ta có: \(\widehat{MAB}+\widehat{BAC}+\widehat{NAC}=180^0\)
\(\Rightarrow\widehat{MAB}+\widehat{NAC}=90^0\left(1\right)\)
Xét trong tam giác vuông ANC có \(\widehat{NAC}+\widehat{NCA}=90^0\left(2\right)\)
Từ (1),(2)
=> \(\widehat{NCA}=\widehat{MAB\left(3\right)}\)
Ta có: \(\Delta MBA~\Delta NAC\left(g.g\right)\)
vì \(\hept{\begin{cases}\widehat{NCA}=\widehat{MAB}\left(theo\left(3\right)\right)\\\widehat{BMA}=\widehat{ANC}=90^0\end{cases}}\)
\(\Rightarrow\frac{S_{\Delta AMB}}{S_{\Delta ANC}}=\left(\frac{AB}{AC}\right)^2=\left(\frac{6}{8}\right)^2=\frac{9}{16}\)
\(\Rightarrow S_{\Delta AMB}=\frac{9}{16}S_{\Delta ANC}\)
=> đpcm
Chúc bạn học tốt!
a, Xét tam giác ABC và tam giác OMN có
^BAC = ^MON = 900
ACON=BCMN=84=105=2ACON=BCMN=84=105=2
Vậy tam giác ABC ~ tam giác OMN
b, ABOM=BCMN=ACONABOM=BCMN=ACON( tỉ số đồng dạng )
a)
Tính AB:
AB2 = BC2 + AC2
AB2 = 164
AB = \(\sqrt{164}\)= 12,8
Tính OM
OM2 = MN2 + ON2
OM2 = 41
OM = \(\sqrt{41}\)= 6,4
b)
Xét \(\Delta ABC\)và \(\Delta OMN\):
\(\widehat{A}\)= \(\widehat{O}\)= 90o
\(\frac{BC}{MN}\)= \(\frac{AC}{ON}\)= 2
\(\Rightarrow\) \(\Delta ABC\)~ \(\Delta OMN\) \(\Leftrightarrow\) \(\frac{AB}{OM}\)= \(\frac{BC}{MN}\)= \(\frac{AC}{ON}\)= 2
a)
Vì AEAE là phân giác góc ngoài của ˆAA^ nên ˆA1=ˆA2A1^=A2^
DEDE là phân giác góc ngoài của ˆDD^ nên ˆD1=ˆD2D1^=D2^
Mà ˆA1+ˆA2+ˆD1+ˆD2=180oA1^+A2^+D1^+D2^=180o (hai góc ở vị trí trong cùng phía)
⇒2ˆA2+2ˆD2=180o⇒2A2^+2D2^=180o
⇒ˆA2+ˆD2=90o⇒A2^+D2^=90o
⇒ΔAED:ˆAED=90o⇒ΔAED:AED^=90o (tính chất tổng 3 góc trong 1 tam giác)
⇒DE⊥AE⇒DE⊥AE
Gọi AE∩DC≡MAE∩DC≡M
ΔADMΔADM có DEDE vừa là đường cao vừa là đường phân giác nên ΔADMΔADM cân đỉnh D
nên DE cũng là đường trung tuyến
⇒E⇒E là trung điểm của AM
Gọi BF∩DC≡NBF∩DC≡N
Chứng minh tương tự có FF là trung điểm của BN
⇒EF⇒EF là đường trung bình của hình thang ABNMABNM
⇒EF//AB//CD⇒EF//AB//CD
b)
EF=AB+MN2EF=AB+MN2 (tính chất đường trung bình của hình thang)
⇒EF=AB+MD+CD+CN2⇒EF=AB+MD+CD+CN2 (1)
Mà MD = AD, CN = BC. Thay vào (1)
⇒EF=AB+AD+CD+BF2⇒EF=AB+AD+CD+BF2 (đpcm)
A B C H K I F E
a) Tứ giác AHKI là hình vuông \(\Rightarrow S_{AHKI}=AH^2=2^2=4\left(cm^2\right)\)
b) Xét \(\Delta ABH\)và \(\Delta AFI\)có:
+) \(\widehat{AIF}=\widehat{AHB}=90^o\)
+) \(AH=AI\)( vì \(AHKI\)là hình vuông )
+) \(\widehat{BAH}=\widehat{IAF}\)( cùng phụ với \(\widehat{HAC}\))
\(\Rightarrow\Delta ABH=\Delta AFI\left(g.c.g\right)\)\(\Rightarrow AB=AF\)
Xét tứ giác \(ABEF\)có: \(BE//AF\), \(AB//EF\), \(\widehat{BAC}=90^o\), \(AB=AF\)
\(\Rightarrow ABEF\)là hình vuông ( đpcm )