Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
h.
n3+ 3n2 -n - 3
= n( n2 -1) + 3( n2 - 1)
= ( n +3)( n2 - 1)
= ( n +3)( n -1)( n +1)
Do n là số nguyên lẻ. Đặt : 2k + 1 = n . Ta có :
( 2k+ 4)2k( 2k +2)
= 2( k + 2)2k . 2( k+ 1)
= 8k( k +1)( k +2)
Do : k ; k+1; k+2 là 3 STN liên tiếp
--> k( k +1).(k+ 2) chia hết cho 6
-->8k( k +1).(k+ 2) chia hết cho 48 với mọi n là số nguyên lẻ
bài 1:
a) 4n+4+3n-6<19
<=> 7n-2<19
<=> 7n<21 <=> n< 3
b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43
-6n+25\(\leq\)43
-6n\(\leq\)18
n\(\geq\)-3
\(n^4-6n^3+27n^2-54n+32\)
\(=n^4-n^3-5n^3+5n^2+22n^2-22n+32n-32\)
\(=\left(n-1\right)\left(n^3-5n^2+22n+32\right)\)
\(=\left(n-1\right)\left(n^3-2n^2-3n^2+6n+16n+32\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n^2-3n+16\right)\) chia hếtcho 2
a, vì m>n
=> m+7>n+7
b, vì m>n
=> -2m<-2n
=>-2m-8<-2n-8
c, vì m>n
=>m+1>n+1
mà m+3>m+1
=>m+3>n+1
phần d,e,f máy mình cùi nên không hiện ra phép tính. sr nhiều
m>n
a) m+7 và m+7
ta có : m>n
=> m+7 > n+7
b) -2m+8 và -2n+8
ta có : m>n
=> -2m > -2n
=> -2m+8 > -2n+8
c) m+3 và m+1
ta có : 3 >1
=> m+3 > m+1
d) \(\dfrac{1}{2}\) \(\left(m-\dfrac{1}{4}\right)\)và\(\dfrac{1}{2}\)\(\left(n-\dfrac{1}{4}\right)\)
ta có: m > n
=> \(m-\dfrac{1}{4}\) > \(n-\dfrac{1}{4}\)
=>\(\dfrac{1}{2}\left(m-\dfrac{1}{4}\right)\)>\(\dfrac{1}{2}\left(n-\dfrac{1}{4}\right)\)
e) \(\dfrac{4}{5}-6\)m và \(\dfrac{4}{5}-6n\)
ta có : m > n
=> -6m > -6n
=> \(\dfrac{4}{5}-6m>\dfrac{4}{5}-6n\)
f) \(-3\left(m+4\right)+\dfrac{1}{2}\) và \(-3\left(n+4\right)+\dfrac{1}{2}\)
ta có : m > n
=> m=4 > n+4
=> -3(m+4) > -3(m+4)
=>\(-3\left(m+4\right)+\dfrac{1}{2}>-3\left(n+4\right)+\dfrac{1}{2}\)
Bài 2:Tìm x biết
(4x+3)3+(5−7x)3+(3x−8)3=0\" id=\"MathJax-Element-4-Frame\">\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)
\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)
\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)
\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)
\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)
ta có 3n^3+13n^2-7n+5 = 3n^3-2n^2+15n^2-10n+3n-2+7 = n^2(3n-2)+5n(3n-2)+3n-2+7 = (n^2+5n+1)(3n-2)+7 => (3n^3+13n^2-7n+5) : (3n-2) có dư =7 để 3n^3+13n^2-7n+5 chia hết thì 7\(⋮\)3n-2 => 3n-2ϵƯ(7) =\(\left\{-1,1,-7,7\right\}\)
=> n\(\in\)\(\left\{1;\dfrac{1}{3},-\dfrac{5}{3},2\right\}\) vậy .....\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=\left(4x\right)^3-3.\left(4x\right)^2.1+3.4x.1^2-1^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-48x^2+12x-1-64x^3-12x-48x^2-9\)
\(=9\)
Vì kết quả là hằng số nên biểu thức trên không phụ thuộc vào x
b, \(=\frac{x^2+2.5.x+25+x^2-2.x.5+25}{x^2+25}\)
\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+50\right)}{x^2+50}=2\)
Biểu thức đó bằng 5m - 5n nên chia hết cho 5 với mọi m,n nguyên