K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

a) =2x^3-10x^2-2x+3x^2-x

=2x^3-7x^2-3x

17 tháng 7 2019

b) -10x^4y^2z^2+35x^3y^2z^2+4x^4y^2z^2+4x^3y^2z^2

=-6x^4y^2z^2+39x^3y^2z^2

15 tháng 8 2017

1.

= 4x\(^{^{ }2}\)-4x-9x+9

=4x(x-1)-9(x-1)

=(4x-9)(x-1)

15 tháng 8 2017

2.

=5x\(^2\)+5x+12x+12

=5x(x+1)+12(x+1)

=(5x+12)(x+1)

8 tháng 12 2016

Gọi Ư CLN của tử và mẫu là d => 3n+1 chia hết cho d, 5n+2 chia hết cho d . Sau đó nhân 3n+1 với 5 và 5n+2 với 3, rồi lấy mẫu trừ tử

=> 15n+6-(15n+5) chia hết cho d => 1 chia hết cho d => d=1=> (3n+1;5n+2)=1(ĐFCM)

8 tháng 12 2016

Bài 2: 

x=y+1 =>x-y=1

Ta có : 

(x-y)(x+y)(x2+y2)(x4+y4)= (x2-y2)(x2+y2)(x4+y4)

=(x4-y4)(x4+y4)=x8-y8 (ĐFCM)

7 tháng 10 2017

Bài 1:

Ta có:

\(a+b+c=0\\ \Leftrightarrow a^3+b^3+c^3+3\left(a^2b+a^2c+b^2a+b^2c+c^2a+c^2b+2abc\right)=0\\ \Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\\ \Leftrightarrow a^3+b^3+c^3-3abc=0\\ \Leftrightarrow a^3+b^3+c^3=3abc\left(dpcm\right)\)

=a, (x-3)(x+3)-(x-7)(x+7)= x2 - 9 - x2 + 7

= -2

b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)= (4x-5)2 - 2(4x+5)(3x-2) + (3x-2)2 

= ( 4x - 5 - 3x + 2 )2 

= ( x - 3 )2

c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2=  2(3x-y)(3x+y)+(3x-y)2+(3x+y)2 

= (3x-y)2+ 2(3x-y)(3x+y)+ (3x+y)2 

= ( 3x - y + 3x + y )2 

= ( 6x )2 

= 36x2 

d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)

27 tháng 8 2019

1, rút gọn

a, (x-3)(x+3)-(x-7)(x+7)

= x^2 - 9 - (x^2 - 49)

= x^2 - 9 - x^2 + 49

= 40

b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)

= 16x^2 - 40x + 25 + 9x^2 - 12x + 4 - 2(12x^2 - 8x + 15x - 10)

= 25x^2 - 52x + 29 - 24x^2 + 16x - 30x + 20

= x^2 - 66x + 49

c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2

= 2(9x^2 - y^2) + 9x^2 - 6xy + y^2 + 9x^2 + 6xy + y^2

= 18x^2 - 2y^2 + 18x^2 + 2y^2

= 36x^2

d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)

= dài vl 

* Phân tích đa thức thành nhân tử: 1/ 25x2 - 10xy + y2 2/ 8x3 + 36x2y + 54xy2 + 27y3 3/ (a2 + b2 - 5)2 - 4 (ab + 2)2 4/ (a + b + c)3 - a3 - b3 - c3 5/ 2x3 + 3x2 + 2x + 3 6/ x3z + x2yz - x2z2 - xyz2 7/ x3 + y (1 - 3x2) + x (3y2 - 1) - y3 8/ x3 + 3x2y + 3xy2 + y + y3 9/ x2 - 6x + 8 10/ x2 - 8x + 12 11/ a2 (b - c) + b2 (c - a) + c2 (a - b) 12/ x3 - 7x - 6 13/ x4 + 4 14/ a4 + 64 15/ x5 + x + 1 16/ x5 + x - 1 17/ (x2 + x)2 - 2 (x2 + x) - 15 18/ (x + 2) (x + 3) (x + 5) -...
Đọc tiếp

* Phân tích đa thức thành nhân tử:

1/ 25x2 - 10xy + y2

2/ 8x3 + 36x2y + 54xy2 + 27y3

3/ (a2 + b2 - 5)2 - 4 (ab + 2)2

4/ (a + b + c)3 - a3 - b3 - c3

5/ 2x3 + 3x2 + 2x + 3

6/ x3z + x2yz - x2z2 - xyz2

7/ x3 + y (1 - 3x2) + x (3y2 - 1) - y3

8/ x3 + 3x2y + 3xy2 + y + y3

9/ x2 - 6x + 8

10/ x2 - 8x + 12

11/ a2 (b - c) + b2 (c - a) + c2 (a - b)

12/ x3 - 7x - 6

13/ x4 + 4

14/ a4 + 64

15/ x5 + x + 1

16/ x5 + x - 1

17/ (x2 + x)2 - 2 (x2 + x) - 15

18/ (x + 2) (x + 3) (x + 5) - 24

19/ (x2 + 8x + 7) (x2 + 8x + 15) + 15

20/ (x2 + 3x + 1) (x2 + 3x + 2) - 6

21/ x2 + 4xy + 3y2

22/ 2x2 - 5xy + 2y2

23/ x2 (y - z) + y2 (z - x) + z2 (x - y)

24/ 2x2 - 7xy + 3y2 + 5xz - 5yz + 2z2

25/ x2 - 7x + 10

26/ 4x2 - 3x - 1

27/ x2 - x - 12

28/ bc (b + c) + ac (c - a) - ab (a + b)

29/ x2y + xy2 + x2z + xz2 + y2z + yz2 + 2xyz

30/ (a - b)3 + (b - c)3 + (c - a)3

31/ ab (a - b) + bc (b - c) + ca (c - a)

32/ bc (b + c) + ca (c + a) + ba (a + b) + 2abc

Giúp mình với, giải chi tiết nha, nhiều bài mà mình đang cần gấp lắm!

3
18 tháng 9 2018

1, \(25x^2-10xy+y^2=\left(5x-y\right)^2\)

2, \(8x^3+36x^2y+54xy^2+27y^3=\left(2x+3y\right)^3\)

4, \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

5, \(2x^3+3x^2+2x+3\)

\(=x^2\left(2x+3\right)+2x+3\)

\(=\left(x^2+1\right)\left(2x+3\right)\)

6, \(x^3z+x^2yz-x^2z^2-xyz^2\)

\(=x^3z-x^2z^2+x^2yz-xy^2\)

\(=xz\left(x^2-xz\right)+xz\left(xy-yz\right)\)

\(=xz\left[x\left(x-z\right)+y\left(x-z\right)\right]\)

\(=xz\left(x+y\right)\left(x-z\right)\)

8, \(x^3+3x^2y+3xy^2+y+y^3\)\(=\left(x+y\right)^3+y\)

9, \(x^2-6x+8\)

\(=x^2-4x-2x+8\)

\(=x\left(x-4\right)-2\left(x-4\right)\)

\(=\left(x-2\right)\left(x-4\right)\)

10, \(x^2-8x+12\)

\(=x^2-6x-2x+12\)

\(=x\left(x-6\right)-2\left(x-6\right)\)

\(=\left(x-2\right)\left(x-6\right)\)

Chỗ còn lại mai làm nốt nha.

19 tháng 9 2018

Gặp chút sự cố đăng nhập nên hơi muộn, xin lỗi nha

11, \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)

\(=a^2b-ab^2+abc-a^2c+b^2c-abc+ac^2-c^2b\)

\(=ab\left(a-b\right)-ac\left(a-b\right)-bc\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)

\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

12, \(x^3-7x-6\)

\(=x^3-3x^2+3x^2-9x+2x-6\)

\(=x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+2\right)\)

\(=\left(x-3\right)\left(x^2+x+2x+2\right)\)

\(=\left(x-3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\)

13, \(x^4+4\)

\(=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-4x^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

14, \(a^4+64\)

\(=a^4+16a^2+64-16a^2\)

\(=\left(a^2+8\right)^2-16a^2\)

\(=\left(a^2-4a+8\right)\left(a^2+4a+8\right)\)

15, \(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+x^2+x+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)

16, \(x^5+x-1\)

\(=x^5-x^4+x^3+x^4-x^3+x^2-x^2+x-1\)

\(=x^3\left(x^2-x+1\right)-x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x^2-1\right)\)

17, \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-15\)

19, \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) (*)

Đặt \(x^2+8x+7=a\) ta có:

(*) \(\Leftrightarrow a\left(a+8\right)+15\)

\(\Leftrightarrow a^2+8a+15\)

\(\Leftrightarrow a^2+3a+5a+15\)

\(\Leftrightarrow a\left(a+3\right)+5\left(a+3\right)\)

\(\Leftrightarrow\left(a+3\right)\left(a+5\right)\)

Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

20, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\) (*)

Đặt \(x^2+3x+1=a\) ta có:

(*) \(\Leftrightarrow a\left(a+1\right)-6\)

\(\Leftrightarrow a^2+a-6\)

\(\Leftrightarrow a^2+3a-2a-6\)

\(\Leftrightarrow a\left(a+3\right)-2\left(a+3\right)\)

\(\Leftrightarrow\left(a-2\right)\left(a+3\right)\)

Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+3x-1\right)\left(x^2+3x+5\right)\)