Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Bezout ta được:
f(x)f(x)chia cho x+1 dư 2 ⇒f(−1)=2⇒f(−1)=4
Vì bậc của đa thức chia là 3 nên f(x)=(x+1)(x2+1)q(x)+ax2+bx+cf(x)=(x+1)(x2+1)q(x)+ax2+bx+c
=(x2+1)(x+1)q(x)+(ax2+a)−a+bx+c=(x2+1)(x+1)q(x)+(ax2+a)−a+bx+c
=(x2+1)(x+1)q(x)+a(x2+1)+bx+c−a=(x2+1)(x+1)q(x)+a(x2+1)+bx+c−a
=(x2+1)[(x+1)q(x)+a]+bx+c−a=(x2+1)[(x+1)q(x)+a]+bx+c−a
Vì f(−1)=4f(−1)=4nên a−b+c=4(1)a−b+c=4(1)
Vì f(x) chia cho x2+1x2+1dư 2x+3 nên
\hept{b=2c−a=3(2)\hept{b=2c−a=3(2)
Từ (1) và (2) ⇒\hept⎧⎨⎩a+c=6b=2c−a=3⇔\hept⎧⎪⎨⎪⎩a=32b=2c=92⇒\hept{a+c=6b=2c−a=3⇔\hept{a=32b=2c=92
Vậy dư f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là 32x2+2x+12
\(f\left(x\right)=\left(x^4+x\right)+\left(3x^3+3\right)+x^2-5x+4=x\left(x^3+1\right)+3\left(x^3+1\right)+x^2-5x+4\)
Để dư bằng 0 thì \(x^2-5x+4=0\)
\(\Rightarrow x\left(x-4\right)-\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
\(f\left(\times\right)=\times^{50}+\times^{49}+\cdot\cdot\cdot+\times+1\)
\(\Rightarrow f\left(\times\right)=\times^{49}\cdot\left(\times+1\right)+\cdot\cdot\cdot+1\cdot\left(\times+1\right)\)
\(\Rightarrow f\left(\times\right)=\left(\times+1\right)\cdot\left(\times^{49}+\cdot\cdot\cdot+1\right)\)
\(\Rightarrow f\left(\times\right)⋮\times+1\)