Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Hình bạn tự vẽ nhé.
Xét tam giác ACH vuông tại H có:
AH2 + CH2 = AC2 (định lí Pytago)
AC2 = 122 + 162 = 400
=> AC = \(\sqrt{400}\) = 20 (cm) (vì AC > 0)
Xét tam giác ABH vuông tại H có:
AB2 = AH2 + BH2 (định lí Pytago)
132 = 122 + BH2
=> BH2 = 132 - 122 = 25
=> BH = \(\sqrt{25}\) = 5 (cm)
Ta có: BC = BH + CH
= 5 + 16 = 21 (cm)
=> CABC = AB + BC + AC = 21 + 13 + 20 = 54 (cm)
Vậy CABC = 54cm.
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay AC=20(cm)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow HB^2=AB^2-AH^2=13^2-12^2=25\)
hay HB=5(cm)
Ta có: HB+HC=BC(H nằm giữa B và C)
nên BC=5+16=21(cm)
Vậy: AC=20cm; BC=21cm
AH \(\perp\) BC ( gt )
\(\Rightarrow\) Tam giác HAC vuông tại H
\(\Rightarrow\) \(^{AC^2}\) = \(^{AH^2}\) + \(^{HC^2}\)
\(\Rightarrow\) \(^{AC^2}\)= \(^{12^2}\) + \(^{16^2}\)
\(\Rightarrow\) \(^{AC^2}\)= 144 + 256
\(\Rightarrow\) \(^{AC^2}\)= 400
\(\Rightarrow\) AC = 20 ( cm )
AH \(\perp\) BC ( gt )
\(\Rightarrow\) Tam giác HAB vuông tại H
\(\Rightarrow\) \(AB^2\) = \(AH^2\) + \(BH^2\)
\(\Rightarrow\) \(BH^2\) = \(AB^2\) - \(AH^2\)
\(\Rightarrow\) \(BH^2\) = \(13^2\) - \(12^2\)
\(\Rightarrow\) \(BH^2\) = 169 - 144
\(\Rightarrow\) \(BH^2\) = 25
\(\Rightarrow\) BH = 5 ( cm )
Có: BH + HC = BC ( Vì H nằm giữa B và C )
\(\Rightarrow\) 5 + 16 = 21 ( cm )
Vậy AC = 20 cm
BC = 21 cm
Học tốt
Áp dụng định lí Pi-ta-go trong ΔAHC vuông tại H ta có:
AC2 = AH2 + HC2 = 122 + 162 = 144 + 256 = 400
⇒ AC = 20 (cm)
Áp dụng định lí Pi-ta-go trong ΔAHB vuông tại H ta có:
BH2 + AH2 = AB2 ⇒ BH2 = AB2 - AH2 = 132 - 122 = 169 -144 = 25
⇒ BH = 5cm
Do đó BC = BH + HC = 5 + 16 = 21 (cm)
A C B H
Áp dụng định lý Pytago ta có:
\(AC^2=AH^2+HC^2=12^2+16^2=400\)
\(\Rightarrow AC=20\left(cm\right)\)
Và \(BH^2=AB^2-AH^2=13^2-12^2=25\)
\(\Rightarrow BH=5\left(cm\right)\Rightarrow BC=BH+HC=5+16=21\left(cm\right)\)
Vậy \(\hept{\begin{cases}AC=20\left(cm\right)\\BC=21\left(cm\right)\end{cases}}\)