Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x(x-y)+(x-y)=(x+1)(x-y)
b) 2x+2y -x(x+y)= 2(x+y)-x(x+y)=(2-x)(x+y)
\(a,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4=49\)
\(\Leftrightarrow12x=36\)
\(\Rightarrow x=3\)
b) \(16x^2-\left(4x-5\right)^2=15\)
\(\Rightarrow16x^2-16x^2+40x-25=15\)
\(\Rightarrow x=1\)
d) \(\left(2x+5\right)\left(8x-7\right)-\left(-4x-3\right)^2=16\)
\(\Leftrightarrow16x^2-14x+40x-35-16x^2+24x-9=16\)
\(\Leftrightarrow50x=60\)
\(\Rightarrow x=\dfrac{6}{5}\)
e) \(49x^2+12x+1=0\)
\(\Leftrightarrow7x+1=0\)
\(\Rightarrow x=\dfrac{-1}{7}\)
f) \(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2-2x+1+y^2+4x+5=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
23.27. \(x^2-y^2-2x+1\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
23.25.
\(\left(x^2-4x\right)^2+\left(x-2\right)^2-10\)
\(=\left(x^2-4x\right)^2-4+\left(x-2\right)^2-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-4\right)+x^2-4x+4-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-10\right)\)
23.23
\(x^3-2x^2-6x+27\)
\(=\left(x^3+27\right)-2x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9-2x\right)\)
\(=\left(x+3\right)\left(x^2-5x+9\right)\)
b)\(B=1^2-2^2+3^2-4^2+...-2016^2+2017^2\)
\(=\left(1^2-2^2\right)+\left(3^2-4^2\right)+...+\left(2015^2-2016^2\right)+2017^2\)
\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(2015-2016\right)\left(2015+2016\right)+2017^2\)
\(=-1\cdot\left(1+2\right)+\left(-1\right)\cdot\left(3+4\right)+...+\left(-1\right)\cdot\left(2015+2016\right)+2017^2\)
\(=-1\cdot\left(1+2+...+2015+2016\right)+2017^2\)
\(=-1\cdot\dfrac{2016\cdot\left(2016+1\right)}{2}+2017^2\)
\(=-2033136+4068289=2035153\)
c)\(C=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(=2^{64}-1-2^{64}=-1\)
Câu 1:
Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
Thay \(a+b+c=0\) vào biểu thức ta được:
\(a^3+b^3+c^3-3abc=0\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrow a^3+b^3=3abc\left(đpcm\right)\)
Vậy \(a^3+b^3=3abc\) khi \(a+b+c=0\)
Câu 3:
\(\text{a) }x^2+x+1\\ =x^2+2\cdot\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left[x^2+2\cdot\dfrac{1}{2}x+\left(\dfrac{1}{4}\right)^2\right]+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ \text{Ta có : }\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\\ \text{ Vậy biểu thức luôn nhận giá trị dương}\text{ }\forall x\\ \)
\(\text{b) }2x^2+2x+1\\ =2x^2+2x+\dfrac{1}{2}+\dfrac{1}{2}\\ =2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}\\ =2\left[x^2+2\cdot\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{1}{2}\\ =2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\\ \text{Ta có: }2\left(x+\dfrac{1}{2}\right)^2\forall x\\ 2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\forall x\\ \text{Vậy giá trị của biểu thức luôn nhận giá trị dương }\forall x\\ \)
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Cho mình 1 số mà bình phương xấp xỉ 1589