K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2023

Để tính độ dài các cạnh của tứ giác ACDM, ta cần sử dụng định lý Pythagoras và các quy tắc về đường cao trong tam giác.

Vì tam giác ABC vuông tại A và đường cao AH, ta có: AH^2 + HB^2 = AB^2 Với HB = 54 cm, ta có: AH^2 + 54^2 = AB^2

Vì tam giác ABC vuông tại A và đường cao AH, ta có: AH^2 + HC^2 = AC^2 Với HC = 96 cm, ta có: AH^2 + 96^2 = AC^2

Vì M là trung điểm AB, ta có AM = MB = AB/2. Vì tam giác ABC vuông tại A, ta có AM = AB/2 = AC/2.

Vì M là trung điểm AB và đường thẳng MH vuông góc với AC tại C, ta có: MH^2 + HC^2 = MC^2 Với HC = 96 cm, ta có: MH^2 + 96^2 = (AC/2)^2

Vậy, ta có hệ phương trình: AH^2 + 54^2 = AB^2 AH^2 + 96^2 = AC^2 MH^2 + 96^2 = (AC/2)^2

Từ đó, ta có thể giải hệ phương trình để tính độ dài các cạnh của tứ giác ACDM.

20 tháng 8 2023

Để tính toán độ dài các cạnh của tứ giác ACDM, chúng ta cần áp dụng các định lý trong hình học tam giác và tứ giác. Với tam giác ABC vuông tại A, ta có: - Đường cao AH chia tam giác ABC thành hai tam giác AHM và AHB. - Vì M là trung điểm AB nên AM = MB = 1/2 AB. - Đường thẳng MH là đường vuông góc với AC tại C. Thông tin đã chọn: - HB = 54cm - HC = 96cm Ta sẽ tính độ dài còn lại: a) Tính độ dài AC: Sử dụng định lý Pythagoras trong tam giác vuông góc AHC: AC^2 = AH^2 + HC^2 AC^2 = (AH^2 + HB^2) + HC^2 (vì AH = AM + MH) AC = √(AH^2 + HB^2 + HC^2) AC = √(54^2 + 96^2) b) Tính độ dài DM: Vì M là trung điểm AB nên ta có DM = 1/2 AB = 1/2 AC. c) Tính độ dài AD: Áp dụng định lý Pythagoras trong tam giác AHM: AH^2 = AM^2 + HM^2 AH^2 = (AM^2) + (HM^2) AH = √(AM^ 2 + HM^2) AH = √((1/2 AB)^2 + HB^2) d) Tính độ dài CM: Vì M là trung điểm AB nên CM = 1/2 AC. Kết quả: Từ các tính toán trên, chúng ta có được độ dài các cạnh của tứ giác ACDM.

2 tháng 11 2015

Hình bạn tự vẽ nha :v 
a, áp dụng định lý pytago vào tam giác ABC có góc BAC =90 ta đc : BC2=AC2+AB thay vào là đc nha
áp dụng hệ thức lượng vào tam giác ABC có góc BAC=90 ta dc :AH.BC=AB.AC thay vào là đc nha
Mà AM=1/2 BC thay vào nha :v
b, Xét tam giác ABE và tam giác ABF có : góc ABF - góc chung và góc AEB= góc BAF=90 => tam giác ABE đồng dạng tam giác FBA => BE/BA=AB/FB=> BE.FB=AB2(1)
áp dụng hệ thức lượng vào tam giác ABC có góc BAC=90  ta đc : AB2 =BH.BC(2)
từ  (1) và (2) => dpcm 

11 tháng 9 2021

Bài 4 : 

a, Xét tam giác ABC vuông tại A, đường cao AH 

* Áp dụng hệ thức : \(AB^2=BH.BC=16\Rightarrow AB=4\)cm 

Theo định lí Ptago : \(AC=\sqrt{BC^2-AB^2}=\sqrt{64-16}=4\sqrt{3}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{16\sqrt{3}}{8}=2\sqrt{3}\)cm 

b, Xét tam giác ABK vuông tại A, đường cao AD 

\(AB^2=BD.BK\)( hệ thức lượng ) (1) 

Xét tam giác ABC vuông tại A, đường cao AH

\(AB^2=BH.BC\)( hệ thức lượng ) (2) 

Từ (1) ; (2) => \(BD.BK=BH.BC\)(3) 

c, Xét tam giác BHD và tam giác BKC 

^B _ chung 

(3) => \(BD.BK=BH.BC\Rightarrow\frac{BD}{BC}=\frac{BH}{BK}\)

Vậy tam giác BHD ~ tam giác BKC ( c.g.c )

=> \(\frac{S_{BHD}}{S_{BKC}}=\left(\frac{BD}{BC}\right)^2\)(4) 

Ta có : cosABD = \(\frac{DB}{AB}\)

=> cos2ABD = \(\left(\frac{DB}{AB}\right)^2\)=> cos2ABD = \(\frac{DB^2}{AB^2}=\frac{DB^2}{16}\)

=> \(\frac{1}{4}cos^2\widehat{ABD}=\frac{DB^2}{64}=\frac{DB^2}{8^2}=\frac{DB^2}{BC^2}=\left(\frac{DB}{BC}\right)^2\)

\(\Rightarrow\frac{1}{4}cos^2\widehat{ABD}=\frac{S_{BHD}}{S_{BKC}}\)theo (4) 

=> \(S_{BHD}=S_{BKC}.\frac{1}{4}cos^2\widehat{ABD}\)

11 tháng 9 2021

Bài 3 : 

a, Với \(x>0;x\ne1\)

\(A=\left(\frac{1}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}+2}\right):\frac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)

\(=\left(\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right):\frac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)^2}=\frac{\sqrt{x}+2}{\sqrt{x}}\)

b, Ta có : \(A=\frac{5}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{5}{3}\Rightarrow3\sqrt{x}+6=5\sqrt{x}\Leftrightarrow6=2\sqrt{x}\Leftrightarrow x=9\)

B1: Cho hàm số y=(m-1)x+2  . tìm điểm mà đồ thị hàm số đi qua với mọi m?B2: Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Trên tia đối của tia AM lấy điểm N sao cho MA=MN.BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.a) cm: tam giác ABC vuông tại C.b) cm NE vuông góc ABc) gọi F là điểm đôis xứng với E qua M, cm NF là tiếp tuyến của (O)B3: Cho nửa đường tròn (O)đường...
Đọc tiếp

B1: Cho hàm số y=(m-1)x+2  . tìm điểm mà đồ thị hàm số đi qua với mọi m?

B2: Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Trên tia đối của tia AM lấy điểm N sao cho MA=MN.BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.

a) cm: tam giác ABC vuông tại C.

b) cm NE vuông góc AB

c) gọi F là điểm đôis xứng với E qua M, cm NF là tiếp tuyến của (O)

B3: Cho nửa đường tròn (O)đường kính AB=2R. Gọi Ax, By là các ti8a vuông góc với AB tại A và B(Ax,By và nửa đường tròn cùng thuộc 1 nửa mặt phẳng bờ AB). Qua điểm C thuộc nửa đường tròn( C khác A, B). kẻ đường thẳng d là tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự ở M và N.

a)cm :MN=AM+BN

b) cm \(\Delta\)MON vuông

 c) AC giao với MO tại I, CB giao với ON tại K, cm tứ giác CIOK là hình chữ nhật

d) gọi D là giao điểm của BC  với Ax, cm MD=MA

0