K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

(x^4+2x^3+3x^2)+(5x^2+10x+15)=0

x^2(x^2+2x+3)+5(x^2+2x+3)=0

(x^2+2x+3)(x^2+5)=0

x^2+2x+3=0 hoặc x^2+5=0

Mà:x^2+2x^3+3=(x+1)^2+2>0 suy ra pt vô nghiệm.

x^2+5>0 suy ra pt vô nghiệm.

Vậy pt đã cho vô nghiệm.

gg.com hí hí 

28 tháng 2 2017

\(x^4+2x^3+8x^2+10x+15=\left(x^4+2x^3+x^2\right)+\left(7x^2+10x+15\right)\)

\(\Leftrightarrow\left(x^2+x\right)^2+2.4.\left(x^2+x\right)+16=x^2-2x+1\\ \)

\(\left(x^2+x+4\right)^2=\left(x-1\right)^2\)

\(\left[\begin{matrix}x^2+x+4=x-1\left(1\right)\\x^2+x+4=1-x\left(2\right)\end{matrix}\right.\)

\(\left[\begin{matrix}\left(1\right)\Leftrightarrow x^2=-5\\\left(x+1\right)^2=-3\end{matrix}\right.\)Vo. No

28 tháng 2 2017

(x^4+2x^3+3x^2)+(5x^2+10x+15)=0

x^2(x^2+2x+3)+5(x^2+2x+3)=0

(x^2+2x+3)(x^2+5)=0

x^2+2x+3=0 hoặc x^2+5=0

Mà:x^2+2x^3+3=(x+1)^2+2>0 suy ra pt vô nghiệm.

x^2+5>0 suy ra pt vô nghiệm.

Vậy pt đã cho vô nghiệm.

Nhớ chọn đúng nha chó yến như :p :p :p

25 tháng 2 2018

\(x^4+2x^3+8x^2+10x+15=0\)

\(\Leftrightarrow\left(x^4+5x^2\right)+\left(2x^3+10x\right)+\left(3x^2+15\right)=0\)

\(\Leftrightarrow x^2\left(x^2+5\right)+2x\left(x^2+5\right)+3\left(x^2+5\right)=0\)

\(\Leftrightarrow\left(x^2+5\right)\left(x^2+2x+3\right)=0\)

mà ta có: \(x^2+5\ge5>0;x^2+2x+3=\left(x+1\right)^2+1\ge1>0\)

nên suy ra phương trình vô nghiệm.

30 tháng 4 2020

1) 3(x + 2) = 5x + 8

<=> 3x + 6 = 5x + 8

<=> 3x + 6 - 5x - 8 = 0

<=> -2x - 2 = 0

<=> -2x = 0 + 2

<=> -2x = 2

<=> x = -1

2) 2(x - 1) = 3(3 + x) + 3

<=> 2x - 2 = 9 + x + 3

<=> 2x - 2 = 12 + x

<=> 2x - 2 - 12 - x = 0

<=> x - 14 = 0

<=> x = 0 + 14

<=> x = 14

3) 5 - (x - 6) = 4(3 - 2x)

<=> 5 - x + 6 = 12 - 8x

<=> 11 - x = 12 - 8x

<=> 11 - x - 12 + 8x = 0

<=> -1 + 7x = 0

<=> 7x = 0 + 1

<=> 7x = 1

<=> x = 1/7

18 tháng 8 2020

1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)

\(\Leftrightarrow35x-5+60x=96-6x\)

\(\Leftrightarrow95x-5=96-6x\)

\(\Leftrightarrow95x+6x=96+5\)

\(\Leftrightarrow101x=101\)

\(\Leftrightarrow x=1\)

2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) 

\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)

\(\Leftrightarrow30x+9=36+24+32x\)

\(\Leftrightarrow30x+9=32x+60\)

\(\Leftrightarrow30x-32x=60-9\)

\(\Leftrightarrow-2x=51\)

\(\Leftrightarrow x=-\frac{51}{2}\)

3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)

\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)

\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)

\(\Leftrightarrow2x+1=5x+1\)

\(\Leftrightarrow2x=5x\)

\(\Leftrightarrow x=0\)

19 tháng 8 2020

4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)

=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)

=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)

=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)

=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)

=> 27 - 9x + 80 - 16x = 12 - 12x - 48

=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0

=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0

=> 143 - 13x = 0

=> 13x = 143

=> x = 11

5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)

=> 6x - 18 + 7x - 35 - 13x - 4 = 0

=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0

=> -57 = 0(vô nghiệm)

6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)

=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)

=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)

=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)

=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)

=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)

=> \(12x+10-10x-3=12x+2\)

=> \(2x+10-3=12x+2\)

=> 2x + 10 - 3 - 12x - 2 = 0

=> (2x - 12x) + (10 - 3 - 2) = 0

=> -10x + 5 = 0

=> -10x = -5

=> x = 1/2

7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)

=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)

=> 6x - 3 - 5x + 10 - x - 7 = 0

=> (6x - 5x - x) + (-3 + 10 - 7) = 0

=> 0x + 0 = 0

=> 0x = 0

=> x tùy ý

Bài 8 tự làm nhé

28 tháng 3 2016

bn đặt x^2+x+4 là a rồi biểu diễn theo a là được

x⁴ + 5x³ + 12x² + 20x + 16 = 0 

Nhận xét: vì 16/1 = (20/5)² ⇒ đây là pt đối xứng. Vì x = 0 không là nghiệm của pt nên chia 2 vế của pt cho x²⇒pt trở thành: 

⇔x² + 5x + 12+ 20/x + 16/x² = 0 

⇔(x²+ 16/x²) +5(x+4/x) + 12 = 0 

đặt x+4/x = t ⇒ t² = x²+ 8 + 16/x² 

⇒ t² -8 + 5t + 12 = 0 

⇔ t² + 5t + 4 = 0 

┌t = -1 ⇒ x+4/x = -1 ⇔x²+x + 4 = 0 ( phương trình vô nghiệm) 
└t=-4 ⇒ x+4/x = -4 ⇔ x²+ 4x + 4 = 0 ⇔ x =-2 

Vậy phương trình có 1 nghiệm duy nhất x=-2

tích mình để tiểu học vui

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

10.

\((x^2-2x-3)(x^2+10x+21)=25\)

\(\Leftrightarrow (x-3)(x+1)(x+3)(x+7)=25\)

\(\Leftrightarrow [(x-3)(x+7)][(x+1)(x+3)]=25\)

\(\Leftrightarrow (x^2+4x-21)(x^2+4x+3)=25\)

Đặt \(x^2+4x-21=a\) thì pt trở thành:

\(a(a+24)=25\)

\(\Leftrightarrow a^2+24a-25=0\)

\(\Leftrightarrow (a-1)(a+25)=0\Rightarrow \left[\begin{matrix} a=1\\ a=-25\end{matrix}\right.\)

Nếu \(a=x^2+4x-21=1\Leftrightarrow x^2+4x-22=0\)

\(\Leftrightarrow (x+2)^2=26\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\) (t/m)

Nếu \(a=x^2+4x-21=-25\Leftrightarrow x^2+4x+4=0\Leftrightarrow (x+2)^2=0\Rightarrow x=-2\) (t/m)

Vậy \(x\in \left\{-2\pm \sqrt{26}; -2\right\}\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

11.

\(x^4-4x^3+10x^2+37x-14=0\)

\(\Leftrightarrow (x^4-4x^3+4x^2)+6x^2+37x-14=0\)

\(\Leftrightarrow x^4+2x^3-(6x^3+12x^2)+(22x^2+44x)-(7x+14)=0\)

\(\Leftrightarrow x^3(x+2)-6x^2(x+2)+22x(x+2)-7(x+2)=0\)

\((x+2)(x^3-6x^2+22x-7)=0\)

\(\Rightarrow \left[\begin{matrix} x+2=0\\ x^3-6x^2+22x-7=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x^3-6x^2+22x-7=0(*)\end{matrix}\right.\)

Đối với pt $(*)$ (ta sử dụng pp Cardano)

\(\Leftrightarrow (x^3-6x^2+12x-8)+10x+1=0\)

\(\Leftrightarrow (x-2)^3+10(x-2)+21=0\)

Đặt \(x-2=a-\frac{10}{3a}\) thì PT trở thành:

\((a-\frac{10}{3a})^3+10(a-\frac{10}{3a})+21=0\)

\(\Leftrightarrow a^3-\frac{1000}{27a^3}+21=0\)

\(\Leftrightarrow 27a^6+576a^3-1000=0\). Đặt \(a^3=t\) thì:

\(27t^2+576t-1000=0\)

\(\Rightarrow 27(t^2+\frac{64}{3}t+\frac{32^2}{3^2})=4072\)

\(\Leftrightarrow 27(t+\frac{32}{3})^2=4072\Rightarrow t=\pm\sqrt{\frac{4072}{27}}-\frac{32}{3}\)

\(\Rightarrow a=\sqrt[3]{\pm \sqrt{\frac{4072}{27}}-\frac{32}{3}}\)

\(x=2+a-\frac{10}{3a}\) với giá trị $a$ như trên.

P/s: Bài này mình thấy có vẻ không phù hợp với lớp 8.