Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 12 :
a,\(\left(x-\frac{1}{2}\right)^2=0\)
Mà: 02=0
=> \(\left(x-\frac{1}{2}\right)^2=0^2\)
\(\Rightarrow x-\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{2}\)
b, \(\left(x-2\right)^2=1\)
Mà : 1=12
\(\Rightarrow\left(x-2\right)^2=1^2\)
=> x - 2 = 1
=> x = 3
c, \(\left(2x-1\right)^3=-8\)
\(\Rightarrow\left(2x-1\right)=-2\)
Vì -8 =-23
nên ...
=> 2x =-1
=> x=0.5
d.\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
cái này cũng như mấy cái trên thôi
Bài 12:
a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
\(x-2=\pm1\)
- Nếu \(x-2=1\)
\(x=3\)
- Nếu \(x-2=-1\)
\(x=1\)
c) \(\left(2x-1\right)^3=-8\)
\(\Rightarrow2x-1=-2\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(x+\frac{1}{12}=\pm\frac{1}{4}\)
- Nếu \(x+\frac{1}{12}=\frac{1}{4}\)
\(x=\frac{1}{6}\)
- Nếu \(x+\frac{1}{12}=-\frac{1}{4}\)
\(x=-\frac{1}{3}\)
Bài 13: có người làm rồi
Bài 14:
a) \(25^3\div5^2\)
\(=\left(5^2\right)^3\div5^2\)
\(=5^6\div5^2=5^4\)
b) \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)
\(=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)
\(=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)
c) \(3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)
\(=3-1+\frac{1}{4}:2\)
\(=2+\frac{1}{8}=2\frac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{50}=\left[\left(\dfrac{1}{2}\right)^5\right]^{10}=\left(\dfrac{1}{32}\right)^{10}\)
1/12>1/32
=>(1/12)^10>(1/32)^10
=>(1/12)^10>(1/2)^50
Có: \(\left(\dfrac{1}{12}\right)^{10}=\dfrac{1}{12^{10}}\)
\(\left(\dfrac{1}{2}\right)^{50}=\dfrac{1}{2^{50}}=\dfrac{1}{\left(2^5\right)^{10}}=\dfrac{1}{32^{10}}\)
Do \(12< 32\Rightarrow12^{10}< 32^{10}\)
\(\Rightarrow\dfrac{1}{12^{10}}>\dfrac{1}{32^{10}}\) hay \(\left(\dfrac{1}{12}\right)^{10}>\left(\dfrac{1}{2}\right)^{50}\)