K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

\(\left(3^2\right)^{2010}=9^{2010}=81^{1005}\)

Vì 1 khi lũy thừa lên bao nhiêu thì số tận cùng vẫn là 1 vì 1 x 1 x 1 x 1... = ......1

Nên \(81^{1005}\)có số tận cùng là 1

Vậy \(\left(3^2\right)^{2010}\)có số tận cùng là 1

18 tháng 6 2016

= 92010 = 811005

Vậy chữ số tận cùng là 1.

18 tháng 6 2016

(32)2010 = 92010=92 x 1005= (92)1005 = 811005
Mà các số tự nhiên có tận cùng là 1 nhân với nhau luon ra số có tận cùng là 1.
Đáp số: chữ số tận cùng là 1

chữ số tận cùng là số 1

18 tháng 6 2016

(3^2)^2010=3^4020=(3^4)^1005=(....1)^1005=....1(vì số nào tận cùng là 1 nâng lên lũy thừa nào cũng sẽ tận cùng là 1)

9 tháng 12 2015

a,21000=(24)250 =16250=...............6

b,4161=4160.4=(42)80.4=1680.4=..........6.4=.............4

c,(198)1945=[(192)4]1945=(...14)1945=.....11945=................1

d,(32)2010=(34)1005=811005=....................1

Số lớn nhất có 5 chữ số: 99999

Số bé nhất có 5 chữ số: 10000

Số số có 5 chữ số:

(99999-10000+1):1=90000 (số)

Đáp số: 90000 số

9 tháng 9 2016

từ 10000 đến 99999 ta có số số hạng là

         (99999-10000)+1-1=89999

vậy có 89999 số 

k mình nha mình bị trừ 100 điểm

21 tháng 2 2017

Ta có : \(\frac{3}{a}-\frac{a}{3}=\frac{5}{6}\)

\(\Leftrightarrow\frac{3}{a}=\frac{5}{6}-\frac{a}{3}=\frac{5-2a}{6}\)

\(\Leftrightarrow5a-2a^2=18\)

# Mik làm ý A trước nhé, mik sợ dài :

- Với n = 1 \(\Rightarrow1=\frac{1.2.3}{6}\)( đúng )

- Giả sử đẳng thức cũng đúng với\(n=k\)hay :

\(1^2+2^2+3^2+...+k^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\)

Ta cần chứng minh nó cũng đúng với\(n=k+1\)hay :

\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\)

Thật vậy, ta có:

\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(\Rightarrow\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\)\(\left(k+1\right)\left(\frac{2k^2+k+6k+6}{6}\right)\)

\(\Rightarrow\)\(\left(k+1\right)\left(\frac{2k^2+7k+6}{6}\right)=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)( đpcm )

# giờ mik làm ý B nha !

- Với n = 1 \(\Rightarrow\)1 = 1 ( đúng )

Giả sử bài toán đúng với\(n=k\left(n\inℕ^∗\right)\)thì ta có :

1 + 23 + 33 + .... + k3 = \(\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)

Ta cần chứng minh đề bài đúng với\(n=k+1\)tức là :

13 + 23 + 33 + ...... + n3 = \(\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)

Đặt \(B=1^3+2^3+...+\left(k+1\right)^3\)

\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\)theo ( 1 )

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)theo ( 2 )

\(\Rightarrow\left(1\right),\left(2\right)\)đều đúng

Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\)\(\frac{n^2\left(n+1\right)^2}{4}\)

\(\Rightarrow\)\(1^3+2^3+...+n^3=\)\(\frac{n^2\left(n+1\right)^2}{4}\)( đpcm )

 
7 tháng 7 2018

b)  \(A=3^1+3^2+3^3+...+3^{2006}\)

\(=3+3^2+\left(3^3+3^4+3^5+3^6\right)+....+\left(3^{2003}+3^{2004}+3^{2005}+3^{2006}\right)\)

\(=12+3^3\left(1+3+3^2+3^3\right)+...+3^{2003}\left(1+3+3^2+3^3\right)\)

\(=12+\left(1+3+3^2+3^3\right)\left(3^3+...+3^{2003}\right)\)

\(=12+40\left(3^3+...+3^{2003}\right)\)

\(=12+.....0=.....2\)

Vậy A có tận cùng là chữ số 2

7 tháng 7 2018

a)  \(A=3^1+3^2+3^3+...+3^{2006}\)

\(\Rightarrow\)\(3A=3^2+3^3+3^4+...+3^{2007}\)

\(\Rightarrow\)\(3A-A=3^{2007}-3\)

\(\Rightarrow\)\(2A=3^{2007}-3\)

\(\Rightarrow\)\(A=\frac{3^{2007}-3}{2}\)

31 tháng 12 2015

Th1: x=3, y=2

Th2: x=7,y=4

31 tháng 12 2015

Tìm các dấu hiệu chia 2;3;7 rồi xét thỏa mãn là ra(p/s lười làm)