Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5B=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2014}{5^{2014}}\)
\(5B-B=4B=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2014}}-\frac{1}{5^{2015}}< \frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\)
Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2014}}\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)
\(5A-A=4A=1-\frac{1}{5^{2014}}< 1\)
=>A<1/4
Ta có 4B<A<1/4
=>B<1/16( đpcm)
\(ĐặtA=\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2014}{2^{2013}}+\frac{2015}{2^{2014}}\)
\(2A=\frac{3}{2}+\frac{4}{2^2}+...+\frac{2014}{2^{2012}}+\frac{2015}{2^{2013}}\)
\(2A-A=\left(\frac{3}{2}+\frac{4}{2^2}+...+\frac{2014}{2^{2012}}+\frac{2015}{2^{2013}}\right)-\left(\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2014}{2^{2013}}+\frac{2015}{2^{2014}}\right)\)
\(A=\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}-\frac{2015}{2^{2014}}\)
\(2A=3+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}+\frac{1}{2^{2012}}-\frac{2015}{2^{2013}}\)
\(2A-A=\left(3+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}+\frac{1}{2^{2012}}-\frac{2015}{2^{2013}}\right)-\left(\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}-\frac{2015}{2^{2014}}\right)\)
\(A=3+\frac{1}{2}-\frac{2015}{2^{2013}}-\frac{3}{2}-\frac{1}{2^{2013}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{2015}{2^{2013}}-\frac{1}{2^{2013}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{4030}{2^{2014}}-\frac{2}{2^{2014}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{4032}{2^{2014}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{2017}{2^{2014}}< 2\)
=> đpcm
Bài này dễ thôi mà nhưng mình chỉ gợi ý thôi nhé! Bạn phải đổi phần mẫu số ra đã nhé ! *CỐ LÊN*
a) => 4/3x = 7/9 - 4/9 = 1/3
=> x = 1/3 : 4/3 = 1/4
b) => 5/2 - x = 9/14 : (-4/7) = -9/8
=> x = 5/2 - (-9/8) = 5/2 + 9/8 = 29/8
c) => 3x = 2 và 2/3 - 3/4 = 8/3 - 3/4 = 23/12
=> x = 23/12 : 3 = 23/36
D) => -5/6 - x = 1/4
=> x = -5/6 - 1/4 = -13/12
a) \(\dfrac{4}{9}+\dfrac{4}{3}x=\dfrac{7}{9}\)
\(\dfrac{4}{3}x=\dfrac{7}{9}-\dfrac{4}{9}=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}:\dfrac{4}{3}\)
\(x=\dfrac{1}{4}\)
b) \(\left(\dfrac{5}{2}-x\right)\left(-\dfrac{4}{7}\right)=\dfrac{9}{14}\)
\(\dfrac{5}{2}-x=\dfrac{9}{14}:\left(-\dfrac{4}{7}\right)=-\dfrac{9}{8}\)
\(x=\dfrac{5}{2}-\left(-\dfrac{9}{8}\right)\)
\(x=\dfrac{29}{8}\)
c) \(3x+\dfrac{3}{4}=2\dfrac{2}{3}\)
\(3x+\dfrac{3}{4}=\dfrac{8}{3}\)
\(3x=\dfrac{8}{3}-\dfrac{3}{4}=\dfrac{23}{12}\)
\(x=\dfrac{23}{12}:3\)
\(x=\dfrac{23}{36}\)
d) \(-\dfrac{5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)
\(-\dfrac{5}{6}-x=\dfrac{1}{4}\)
\(x=-\dfrac{5}{6}-\dfrac{1}{4}\)
\(x=-\dfrac{13}{12}\)
Gọi A=\(\frac{989898.89-898989.98}{2^3+3^4+...+2014^{2015}}\)
A=\(\frac{98.10001.89-89.10001.98}{2^3+3^4+...+2014^{2015}}\)
A=\(\frac{98.89.\left(10001-10001\right)}{2^3+3^4+...+2014^{2015}}\)
A=\(\frac{98.89.0}{2^3+3^4+...+2014^{2015}}\)
A=\(\frac{0}{2^3+3^4+...+2014^{2015}}\)
A=0
k cho mình nha!