Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này trong SGK hay là SBT cũng có dạng tương tự hay sao ấy
c) ΔFNA~ΔFDC => \(\frac{S_{FNA}}{S_{FDC}}=\frac{AN^2}{DC^2}\) (1)
ΔAMC~ΔFDC => \(\frac{S_{AMC}}{S_{FDC}}=\frac{MC^2}{DC^2}\) (2)
Ta cũng có AN = DM (3)
Từ (1), (2) và (3) ta có : \(S^2_{FDC}=\frac{S_{FNA}.S_{AMC}.CD^4}{MD^2.MC^2}=S_{FNA}.S_{AMC}.\frac{\left(MD+MC\right)^4}{MD^2.MC^2}\)
\(\ge16.S_{FNA}.S_{AMC}\) (Áp dụng BĐT Cauchy)
~ Học tốt nha bạn ~
a) Xét \(\Delta\)ABC có: BF là trung tuyến;CF là trung tuyến
=> F trung điểm AB;E trung điểm AC
Do đó => EF là đường trung bình của \(\Delta\)ABC
=> EF=1/2BC;EF//BC (1)
Lại có: M trung điểm BG;N trung điểm CG (gt)
=> MN là đường trung bình của \(\Delta\)GBC
=> MN=1/2BC;MN//BC (2)
Từ (1) và (2) => FE=MN;FE//MN
=>MNEF là hbh ( 2 cạnh đối // và = nhau)
b) Ta có MNEF là hbh
Để MNEF là hcn thì ME_|_ EF
Mặt khác: ME_|_ EF
EF//BC ( EF đường tb)=>FG//BC
(ME là đường tb vì M trung điểm BG;BE trung tuyến)=>ME//AF=>MG//AG
Nên: AF_|_BC
=> ^B=^C=90 độ
=> ABC cân thì MNEF là hcn
Để MNEF là hình thoi thì EF=FM
Vì EF là đường tb của t/gABC => EF=1/2BC
MF là đường tb của t/gBFE=>MF=1/2FE
=> G là trọng tâm của t/gABC
=> AG=2/3BC
Nếu có điểm = AG thì đánh ở giữa BC ( o chắc )
=> MNEF là hcn thì AG=2/3BC