Cho đường tròn (O) và điểm M ở ngoài đường tròn, kẻ hai tiếp...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2024

a) Ta có ∠MAB + ∠MOB = 90° + 90° = 180° (vì MA, MB là tiếp tuyến của (O) tại A, B)
Suy ra, tứ giác MAOB nội tiếp.

- SC.SB = SA.SE:

Ta có ∠SCE = ∠SAE = 90° (vì EC là đường kính của (O))
Suy ra, tam giác SCE và tam giác SAE vuông cùng tại E và có cạnh chung là SE
Do đó, SC.SB = SA.SE theo định lý hình chiếu.

b) Ta có ∠ACS = ∠AOM = 90° và ∠CAS = ∠MAO (vì tứ giác MAOB nội tiếp)
Suy ra, tam giác ACS đồng dạng tam giác AOM theo định lý đồng dạng tam giác góc-góc.
Ta có ∠MAS = ∠ACS = 90° và ∠AMO = ∠CAO (vì tứ giác MAOB nội tiếp)
Suy ra, tam giác MAS đồng dạng tam giác AOC theo định lý đồng dạng tam giác góc-góc.
Vì vậy, tam giác MAS cân tại A.

c) Ta có ∠CBA = ∠COA (vì tứ giác MAOB nội tiếp)
Và ∠COA = ∠DOE (vì EC là đường kính của (O))
Và ∠DOE = ∠NDE (vì DE // ON)
Suy ra, ∠CBA = ∠NDE.

18 tháng 5 2018

cho tam giác ABC ( AB<AC) có ba góc nhọc nội tiếp đường tròn tâm (O) và D là hình chiếu của B trên AO sao cho D nằm giữa A và O. gọi M là trung điểm của BC, N là giao điểm của BD và AC, F là giao điểm của MD và AC, E là giao điểm thứ hai của BD với (O), H là giao điểm của BF và AD.

1/ chứng minh tứ giác BDOM nội tiếp và góc MOD + NAE=180. 

2/ chứng minh DF //CE.

3/ chứng minh CA là tia phân giác của góc BCE

4/ Chứng minh HN vuông góc với AB

21 tháng 6 2021

A B C E F N M O D G

1. Vì \(\widehat{ADB}=\widehat{AEB}=90^0\) nên tứ giác AEBD nội tiếp đường tròn đường kính AB.

2. Tứ giác AEBD, AFCD nội tiếp và BE, CF tiếp xúc (O), suy ra:

\(\widehat{AED}=\widehat{ABC}=\widehat{ACF}=\widehat{ADF};\widehat{AFD}=\widehat{ADE}\)

Do đó \(\Delta\)EAD ~ \(\Delta\)DAF, suy ra \(AD^2=AE.AF\)

3. Ta có \(AE.AF=\left(AM+AN\right)^2=\frac{\left(AE+AF\right)^2}{4}\Leftrightarrow\left(AE-AF\right)^2=0\Leftrightarrow AE=AF\)

Từ đó \(\Delta\)AEG = \(\Delta\)AFG (Cạnh huyền.Cạnh góc vuông), suy ra GA là phân giác góc BGC

Mà \(\Delta\)GBC cân tại G nên GA là trung trực BC hay \(\Delta\)ABC cân tại A

Vậy đường cao AD trùng với AO hay A,O,D thẳng hàng.

28 tháng 1 2022

Bạn tự vẽ hình.

a, \(xy\) cách \(\left(O\right)\) một khoảng \(OK=a\)

Mà \(OK< R\)

=> \(K\in xy\) và  \(xy\) cắt \(\left(O\right)\) tại hai điểm D và E

b, \(OK\perp xy\) đồng thời \(OK\perp AK\) => \(\widehat{AKO}=90^o\) => K thuộc đường tròn đường kính AO (1)

AC, AB là 2 tiếp tuyến => \(\hept{\begin{cases}AC\perp CO\\AB\perp BO\end{cases}}\)=> \(\hept{\begin{cases}\widehat{ACO}=90^o\\\widehat{ABO}=90^o\end{cases}}\)

=> B, C thuộc đường kính BC (2)

(1); (2) => K, B, C thuộc đường kính BC

Hay O, A, B, C, K cùng thuộc đường kính BC

c, \(AK\perp KO\)

=> \(\widehat{AKS}=90^o\)

=> K thuộc đường tròn đường kính AS (3)

=> \(AO\perp BC\) tại M

=> \(\widehat{AMS}=90^o\)

=> M thuộc đường tròn đường kính AS (4)

(3); (4) => AMKS nội tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em