K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

Câu 1 :

Ta có  \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)

\(\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\)

Đặt : \(\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}=k\)

\(\Rightarrow a=2k;b=\frac{3k}{2};c=\frac{4k}{3}\)

Do : \(a-b=15\)

\(\Rightarrow2k-\frac{3k}{2}=\frac{k}{2}=5\)

\(\Rightarrow k=5.2=10\)

\(\Rightarrow a=2.10=20\)

\(\Rightarrow b=\frac{3.10}{2}=15\)

\(\Rightarrow c=\frac{40}{3}\)

24 tháng 12 2018

BÀI 2 mak k bt(viết cái đề cx sai nói gì làm!):

\(\left(2008\cdot a+3b+1\right)\left(2008^a+2008a+b\right)=225\)

=> cả 2 thừa số đều lẻ.

=>\(2018^a+2018a+b\)là số lẻ        (1)

Với a khác 0,từ (1) suy ra:

b lẻ.

=>3b+1  chẵn

=>2008a+3b+1 chẵn(loại)

=>a=0,thay vào đề bài,ta có:

(3b+1)(b+1)=225=3*75= 5*45=9*25

do 3b+1>b+1 và 3b+1 không chia hết cho 3

\(\Rightarrow\hept{\begin{cases}3b+1=25\\b+1=9\end{cases}\Rightarrow}b=8\)

vậy:a=0,b=8

Giúp mình với:Câu 1:Cho B= \(\frac{1}{2\left(n-1\right)^2+3}\).Tìm số nguyên n để B có giá trị lớn nhất.Câu 2:Độ dài ba cạnh của một tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao trương ứng ba cạnh đó tỉ lệ với số nào?Câu 3:a, Tính A=1+1/2(1+2)+1/3(1+2+3)+...+1/20(1+2+3+...+20)b, So sánh \(\sqrt{17}+\sqrt{26}+1\) và \(\sqrt{99}\)c,Chứng minh...
Đọc tiếp

Giúp mình với:

Câu 1:Cho B= \(\frac{1}{2\left(n-1\right)^2+3}\).Tìm số nguyên n để B có giá trị lớn nhất.

Câu 2:Độ dài ba cạnh của một tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao trương ứng ba cạnh đó tỉ lệ với số nào?

Câu 3:

a, Tính A=1+1/2(1+2)+1/3(1+2+3)+...+1/20(1+2+3+...+20)

b, So sánh \(\sqrt{17}+\sqrt{26}+1\) và \(\sqrt{99}\)

c,Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Câu 4: Tìm một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỷ lệ với 1;2;3.

Các bạn ạ! Mình cảm thấy rất có lỗi khi đã hỏi quá nhiều! Các bạn trả lời cho mình rất nhiệt tình mà mình chỉ trả lời chỉ có vài câu hỏi của các bạn! Mong các bạn lượng thứ! Mình hứa lên lớp thì mình sẽ giảng giải lại cho các bạn. Chúc HỌC24 phát triển mạnh, các bạn học giỏi lên mỗi ngày với HỌC24 nha!

5
20 tháng 6 2016

Mỗi câu hỏi bạn chỉ đăng 1 bài toán lên thôi nha nếu muốn nhận được câu trả lời nhanh haha

Câu 1 : 

\(B=\frac{1}{2\left(n-1\right)^2+3}\) có GTLN

<=> 2(n - 1)2 + 3 có GTNN

Ta có : (n - 1)2 > 0 => 2(n - 1)2 > 0 => 2(n - 1)2 + 3 > 3

=> GTNN của 2(n - 1)2 + 3 là 3 <=> (n - 1)2 = 0 <=> n = 1

Vậy B có GTLN là \(\frac{1}{3}\) <=> n = 1

2 tháng 2 2020

Bài 1 : 

Vì \(a,b,c\)là độ dài các cạnh của tam giác (gt)

\(\Rightarrow\hept{\begin{cases}c< a+b\\a< b+c\\b< c+a\end{cases}}\) ( theo bất đẳng thức trong tam giác )

Ta có công thức : \(\frac{a}{b}< \frac{a+m}{b+m}\left(\frac{a}{b}< 1;a,b,m>0\right)\)

\(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\left(1\right)\)

\(\frac{b}{c+a}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\left(2\right)\)

\(\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\left(3\right)\)

Cộng theo vế (1) , (2) và (3) ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\left(đpcm\right)\)

Bài 2 , để chiều nhé bạn

2 tháng 2 2020

Bài 3 : 

Cách 1 : 

\(\left|x-1004\right|-\left|x+1003\right|\)

+ ) Xét \(x< -1003\)suy ra 

\(\hept{\begin{cases}x+1003< 0\Rightarrow\left|x+1003\right|=-\left(x+1003\right)=-x-1003\\x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)

Khi đó : \(A=\left(-x+1004\right)-\left(-x-1003\right)=2007\)

+ ) Xét \(-1003\le x< 1004\). Suy ra 

\(\hept{\begin{cases}x\ge1003\Rightarrow x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\\x< 1004\Rightarrow x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)

Khi đó : \(A=\left(-x+1004\right)-\left(x+1003\right)=1-2x\)

+ ) Xét \(x\ge1004\). Suy ra 

\(\hept{\begin{cases}x-1004\ge0\Rightarrow\left|x-1004\right|=x-1004\\x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\end{cases}}\)

Khi đó : \(A=\left(x-1004\right)-\left(x+1003\right)=-2007\)

Ta thấy với \(x< -1003\)thì A đạt giá trị lớn nhất là 2007 

Vậy \(A_{max}=2007\)khi \(x< -1003\)

14 tháng 8 2016

Bài 2: Mình nghĩ câu a là a+2b-3c=-20

a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5

a/2 = 5 => a = 2 . 5 = 10

b/3 = 5 => b = 5 . 3 = 15

c/4 = 5 => c = 5 . 4 = 20

Vậy a = 10; b = 15; c = 20

b) Ta có: a/2 = b/3 => a/10 = b/15

              b/5 = c/4 => b/15 = c/12

=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7

a/10 = -7 => a = -7 . 10 = -70

b/15 = -7 => b = -7 . 15 = -105

c/12 = -7 => c = -7 . 12 = -84

Vậy a = -70; b = -105; c = -84.

14 tháng 8 2016

bài 1

a:b:c:d=2:3:4:5=

câu 1:

1+x^3+y^2

câu 2

a, c=a+b=(\(x^2\)-2y+xy+1)+(\(x^2\)+y-x^2y^2-1)

              =x^2-2y+xy+1+x^2+y-x^2y^2-1

             = (x^2+x^2)+(-2y+y)+(1-1)+xy

             = 2x^2-y+xy

b,c=b-a=(x^2-2y+xy+1)-(x^2 +y-x^2y^2-1)

            = x^2-2y+xy+1-x^2-y+x^2y^2+1

               =(x^2-x^2)+(-2y-y)+(1+1)+xy

           =2x^2-3y+2+xy

cho mik nha

23 tháng 10 2018

Bài 3:

Ta có:\(|\frac{a}{2}-\frac{b}{3}|+|\frac{b}{4}-\frac{c}{3}|+|a+b+c-58|=0.\)

\(\Leftrightarrow\hept{\begin{cases}\frac{a}{2}-\frac{b}{3}=0\\\frac{b}{4}-\frac{c}{3}=0\\a+b+c-58=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{4}=\frac{c}{3}\\a+b+c=58\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a}{8}=\frac{b}{12}=\frac{c}{9}\\a+b+c=58\end{cases}}}\)

\(\Leftrightarrow\frac{a+b+c}{8+12+9}=\frac{58}{29}=2\)

=> a/8=2 Vậy a=16

=> b/12=2 Vậy b=24

=> c/9=2 Vậy c=18