K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

Câu 2: Vì a+b+c=6

=>(a+b+c)2=62=36

=>a2+b2+c2+2ab+2bc+2ac=36

=>2(ab+ac+bc)=24

=>ab+ac+bc=12

=>a2+b2+c2=ab+ac+bc

Mà a2+b2+c2>=ab+ac+bc.Dấu "=" xảy ra <=> a=b=c

Do đó a=b=c

Mà a+b+c=6

=>a=b=c=2

=>P=(2-3)2013 - (2-3)2013 - (2-3)2013 = - 1 - ( -1) - (-1)=1

29 tháng 2 2016

bằng 1 , 0 sai dc đâu

1 tháng 3 2016

người ta cần lời giải mà

12 tháng 9 2021

Dễ chứng minh được \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(true\right)\)

\(\Rightarrow2\left(a+b+c\right)\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow a+b+c\le6\)

Ta có : \(T=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

\(=1-\frac{1}{a+1}+1-\frac{1}{b+1}+1-\frac{1}{c+1}\)

\(=3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)

\(\le3-\frac{9}{a+b+c+3}\le3-\frac{9}{6+3}=2\)

Dấu "=" xảy ra khi \(a=b=c=2\)

12 tháng 9 2021

bạn ơi , kết quả thì đúng r nhưng tại sao đoạn \(2\left(a+b+c\right)\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le6\)

24 tháng 11 2017

fkfkbang14

1 tháng 5 2018

bn sử dụng bất đẳng thức cô si đi

1 tháng 5 2018

Nguyễn Đại Nghĩa,bác nói cụ thể hơn được ko :v

20 tháng 7 2017

thỏa cái j sửa đi