K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

ta có : \(\frac{4n^3-4n^2-n+4}{2n+1}=\frac{\left(2n+1\right)\left(2n^2-3n+1\right)+3}{2n+1}\)\(=2n^2-3n+1+\frac{3}{2n+1}\)

để \(4n^3-4n^2-n+4⋮2n+1\) thì \(2n+1\) là ước của \(3\) nên \(2n+1=\)\(\left(1;-1;3;-3\right)\)cái này phải là dấu ngoặc nhọn nha mình k ghi đc nên cậu tự sửa nhá

TH1: với \(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)

TH2: với \(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)

TH3: với \(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)

TH4: với \(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)

21 tháng 10 2017

n=0,-1,1

21 tháng 10 2017

mk ko bt sao mk chia xg gửi bài nó bị vậy nx , bn tự chia nha , mà quan trọng là phần dưới ,nếu chưa lm đc thì bn nới mk mk sẽ chia giúp ngoc anh nguyen

b: \(\Leftrightarrow n^3-8+6⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

c: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

\(\Leftrightarrow n^2+n+1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)

\(\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

 

3 tháng 11 2017

a,

6n^2 - n + 5 2n + 1 3n - 2 6n^2 + 3n -4n + 5 -4n - 2 7 \

Để \(A⋮B\) \(\Leftrightarrow7⋮2n+5\) \(\Leftrightarrow2n+5\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)

Ta có bảng sau :

\(2n+5\) \(1\) \(7\) \(-1\) \(-7\)
\(n\) \(-2\) \(1\) \(-3\) \(-6\)

Vậy \(\left[{}\begin{matrix}n=-2\\n=1\\n=-3\\n=-6\end{matrix}\right.\) thì A chia hết cho B

b, tường tự câu a

Nếu mà bn ko lm đc thì nói mk ,mk sẽ giải cho

3 tháng 11 2017

Đặt tính chia:

6n-n+5 2 2n+1 3n-2 6n+3n - 2 -4n+5 - -4n-2 _______________ 7

\(\Rightarrow\text{Để }A⋮B\\ \text{thì }\Rightarrow7⋮2n+1\\ \Rightarrow2n+1\inƯ_{\left(7\right)}\\ \text{Mà }Ư_{\left(7\right)}=\left\{\pm1;\pm7\right\}\)

Ta lập bảng giá trị :

\(2n+1\) \(-1\) \(1\) \(-7\) \(7\)
\(n\) \(-1\) \(0\) \(-4\) \(3\)

\(\Rightarrow n\in\left\{-4;-1;0;3\right\}\)

\(\text{Vậy }\text{ để }A⋮B\text{ thì }n\in\left\{-4;-1;0;3\right\}\)

b) Xem lại đề

\(\)

5 tháng 8 2017

a, Ta có : \(4n^2.\left(n+2\right)+4n.\left(n+2\right)\)

\(=\left(n+2\right).\left(4n^2+4n\right)\)

\(=4n.\left(n+2\right).\left(n+1\right)\)

\(=4n.\left(n+1\right).\left(n+2\right)⋮4\)

\(n.\left(n+1\right).\left(n+2\right)\) là tích của ba số liên tiếp

\(\Rightarrow n.\left(n+1\right).\left(n+2\right)⋮2\)\(3\)

\(n.\left(n+1\right).\left(n+2\right)⋮\left(2.3\right)\)

Vậy \(4n^2.\left(n+2\right)+4n.\left(n+2\right)⋮24\left(đpcm\right)\)

b,

+ Thực hiện phép tính :

6n^2 + n - 1 - 6n^2 + 4n 3n + 2 2n - 1 -3n - 1 - -3n - 2 1

Ta có : \(\dfrac{6n^2+n-1}{3n+2}=2n-1+\dfrac{1}{3n+2}\)

Để \(\left(6n+n-1\right)⋮\left(3n+2\right)\) thì \(\dfrac{1}{3n+2}\in Z\)

\(\Rightarrow3n+2\inƯ\left(1\right)\)

\(\Rightarrow3n+2\in\left\{\pm1\right\}\)

Ta có bảng sau :

3n+2 1 -1
n \(-\dfrac{1}{3}\) -1

Vậy n = -1

19 tháng 3 2018

A=3^(2n+3)+2(4n+1)chia hết cho 25 
có thể dùng pp như phần a để giải phần này 
tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a) 
Pp lựa chọn phần dư: 
A=3^(2n+3)+2^(4n+1) 
gọi 3^(2n+3)=B,2^(4n+1)=C 
n=1 B=3^(2+3)=3^5=243 chia 25 dư 18 
C=2^5=32 chia 25 dư 7 
B+C chia 25 dư bằng 18+7chia 25 dư 0 

giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết 
cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25 
Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k 
khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25 
n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25 
với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k) 
A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250... 
A(k+2)=75C(k)+250C(k)+6(B(k)+C(k)) 
hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25 
còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25 
ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với 
k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25

:3

25 tháng 3 2018

Trả lời

A=3^(2n+3)+2(4n+1)chia hết cho 25 
có thể dùng pp như phần a để giải phần này 
tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a) 
Pp lựa chọn phần dư: 
A=3^(2n+3)+2^(4n+1) 
gọi 3^(2n+3)=B,2^(4n+1)=C 
n=1 B=3^(2+3)=3^5=243 chia 25 dư 18 
C=2^5=32 chia 25 dư 7 
B+C chia 25 dư bằng 18+7chia 25 dư 0 

giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết 
cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25 
Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k 
khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25 
n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25 
với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k) 
A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250... 
A(k+2)=75C(k)+250C(k)+6(B(k)+C(k)) 
hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25 
còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25 
ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với 
k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25