Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7
=> 4 (a - 3) chia hết cho 7 => 4a - 12 chia hết cho 7
=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)
a chia cho 13 dư 11 => a - 11 chia hết cho 13
=> 4 (a - 11) chia hết cho 13 => 4a - 44 chia hết cho 13
=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)
a chia cho 17 dư 14 => a - 14 chia hết cho 17
=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17
=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)
Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)
Mà a nhỏ nhất => 4a - 5 nhỏ nhất
=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547
=> 4a = 1552 => a= 388
2. Gọi ƯCLN(a,b) = d
=> a = d . m (ƯCLN(m,n) = 1)
b = d . n
Do a < b => m<n
Vì BCNN(a,b) . ƯCLN(a,b) = a . b
\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)
Vì BCNN(a,b) + ƯCLN(a,b) = 19
=> m . n . d + d = 19
=> d . (m . n + 1) = 19
=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)
Ta có bảng sau:
d m . n +1 m . n m n a b 1 19 18 1 2 18 9 1 18 2 9
Vậy (a,b) = (2;9) ; (1 ; 18)
3.
Bài 2:
c, Theo đề bài ra, ta có:
a chia 5 dư 3 => a = 5m + 3 (m \(\in\)N) => 2a = 15m + 6 chia 5 dư 1 => 2a - 1 chia hết cho 5 (1)
a chia 7 dư 4 => a = 7n + 4 (n \(\in\)N) => 2a = 14m + 8 chia 7 dư 1 => 2a - 1 chia hết cho 7 (2)
và a nhỏ nhất (3)
Từ (1),(2),(3) suy ra 2a - 1 \(\in\)BCNN(5,7)
Mà 5 = 5 ; 7 = 7
=> BCNN(5,7) = 5.7 = 35
=> 2a - 1 = 35
=> 2a = 36
=> a = 18
a) \(\left|x-3\right|=2x+4\)
+) TH1: \(x-3\ge0\Rightarrow x\ge3\)
Khi đó: \(x-3=2x+4\)
\(\Rightarrow x-2x=3+ 4\)
\(\Rightarrow-x=7\)
\(\Rightarrow x=-7\) (loại)
+) TH2: \(x-3< 0\Rightarrow x< 3\)
Khi đó: \(-x+3=2x+4\)
\(\Rightarrow-x-2x=-3+4\)
\(\Rightarrow-3x=1\)
\(\Rightarrow x=-\frac{1}{3}\) (nhận)
Vậy \(x=-\frac{1}{3}.\)
b) Để \(M\in Z\) thì \(2n-7⋮n-5\)
\(\Rightarrow2\left(n-5\right)+3⋮n-5\)
Vì \(2\left(n-5\right)⋮n-5\)
nên \(3⋮n-5\) \(\Rightarrow n-5\inƯ\left(3\right)\)
..............