K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

a. 4 . 102 - 52 + 4 . 10 + 1

= 4 . 100 - 25 + 4 . 10 + 1

= 400 - 25 + 40 + 1

= 416

b. 932 - 62 - 2 . 6 - 2

= 8649 - 36 - 12 - 2

= 8599

a: Ta có: \(4x^2-y^2+4x+1\)

\(=\left(2x+1\right)^2-y^2\)

\(=\left(2x+y-1\right)\left(2x-y-1\right)\)

\(=\left(20+5-1\right)\left(20-5-1\right)\)

\(=24\cdot14=336\)

 

5 tháng 8 2017

Bài 2:

\(A=x^2+4y^2-2x+10-4xy-4y\)

\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 vào biểu thức A ta được: \(A=5^2-2.5+10=25\)

\(B=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)\left(y-1\right)+y^2-2y+1\)

\(=x^2+4xy+4y^2-2xy+2x-4y^2+4y+y^2-2y+1\)

\(=x^2+2xy+y^2+2x+2y+1\)

\(=\left(x+y\right)^2+2\left(x+y\right)+1\)

Thay x + y = 5 vào biểu thức B ta được: \(B=5^2+2.5+1=25+10+1=36\)

\(C=x^2-y^2-4x=\left(x^2-4x+4\right)-y^2-4\)

\(=\left(x-2\right)^2-y^2-4\) \(=\left(x-y-2\right)\left(x-2+y\right)-4\)

Thay x + y = 2 vào C ta được: \(C=\left(x-2-y\right)\left(2-2\right)-4=0-4=-4\)

\(D=x^2+y^2+2xy-4x-4y-3\)

\(=\left(x+y\right)^2-4\left(x+y\right)-3\) Thay x + y = 4 vào D ta được:

\(D=4^2-4.4-3=16-16-3=-3\)

5 tháng 8 2017

Bài 3:

a) \(N=-9x^2+12x-5=-\left(9x^2-12x+4\right)-1\)

\(=-\left(3x-2\right)^2-1\)

Do \(\left(3x-2\right)^2\ge0\) nên \(-\left(3x-2\right)^2-1< 0\)

Vậy N < 0

b) ghi đề cẩn thận lại đi, mk k hiểu

1 tháng 8 2018

Bài 1:

a) \(8\left(x-2\right)-2\left(3x-4\right)=2\)

\(\Rightarrow2\left[4\left(x-2\right)-\left(3x-4\right)\right]=2\)

\(\Rightarrow4\left(x-2\right)-3x+4=0\)

\(\Rightarrow4x-8-3x+4=0\)

\(\Rightarrow x-4=0\)

\(\Rightarrow x=4\)

b) \(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)

\(\Rightarrow5\left[2\left(3x-2\right)+11-4x\right]-3\left(5x+2\right)=25\)

\(\Rightarrow5\left(6x-4+11-4x\right)-3\left(5x+2\right)=25\)

\(\Rightarrow5\left(2x+7\right)-3\left(5x+2\right)=25\)

\(\Rightarrow10x+35-15x-6=25\)

\(\Rightarrow-5x+29=25\)

\(\Rightarrow-5x=25-29\)

\(\Rightarrow-5x=-4\)

\(\Rightarrow x=\dfrac{4}{5}\)

c) \(2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)

\(\Rightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)

\(\Rightarrow x+4=0\)

\(\Rightarrow x=-4\)

d) \(4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)

\(\Rightarrow12x^2+8x-12x^2-30x+21x-21=0\)

\(\Rightarrow-x-21=0\)

\(\Rightarrow x=-21\)

Bài 2:

a) \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)

\(P=8x^2y-6y^2-9x^2y+12y^2\)

\(P=-x^2y+6y^2\)

Thay x = -1 ; y = 2 vào P ta được

\(P=-\left(-1\right)^2.2+6.2^2\)

\(P=-2+24=22\)

b) \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)

\(Q=20x^3-12x^2y-4x^3-x^2y\)

\(Q=16x^3-13x^2y\)

Thay x = -1 ; y = 2 vào Q ta được

\(Q=16\left(-1\right)^3-13\left(-1\right)^2.2\)

\(Q=-16-26\)

\(Q=-42\)

c) \(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)

\(H=x^4-xy+x^2y-x^4-x^2y+3xy\)

\(H=2xy\)

Thay x = 1/4 ; y = 2012 vào H ta được

\(H=2.\dfrac{1}{4}.2012\)

\(H=1006\)

1 tháng 8 2018

1.a)\(8\left(x-2\right)-2\left(3x-4\right)=2\)

\(\Leftrightarrow8x-16-6x+8=2\)

\(\Leftrightarrow2x-8=2\Leftrightarrow2x=10\Leftrightarrow x=5\)

b)\(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)

\(\Leftrightarrow30x-20-15x-6+55-20x=25\)

\(\Leftrightarrow-5x+29=25\Leftrightarrow-5x=-4\Leftrightarrow x=\dfrac{4}{5}=0,8\)

\(c)2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)

\(\Leftrightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)

\(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

\(d)4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)

\(\Leftrightarrow12x^2+8x-12x^2-30x+21x-21=0\)

\(\Leftrightarrow-x-21=0\Leftrightarrow-x=21\Leftrightarrow x=-21\)

2.

a)\(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)

\(\Leftrightarrow8x^2y-6y^2-9x^2y-12y^2\)

\(\Leftrightarrow x^2y-18y^2\)

tại x=-1 , y=2

ta có:\(x^2y-18y^2=\left(-1\right)^2.2-18.2^2=2-72=-70\)

vậy \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y=-70\) tại x=-1,y=2

b)\(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)

\(\Leftrightarrow20x^3-12x^2y-4x^3-x^2y\)

\(\Leftrightarrow17x^3-13x^2y\)

tại x=-1,y=2

ta có:\(17x^3-13x^2y=17\left(-1\right)^3-13\left(-1\right)^2.2=-17-26=-43\)

vậy \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)=-43\)

c)\(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)

\(\Leftrightarrow x^4-xy+x^2y-x^3-x^2y+3xy\)

\(\Leftrightarrow x^4+2xy-x^3\)

tại x=1/4 và y=2012

ta có:\(x^4+2xy-x^3=\left(\dfrac{1}{4}\right)^4+2.\dfrac{1}{4}.2012-\left(\dfrac{1}{4}\right)^3\approx1006\)

Bài 2: 

a: \(3\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)\)

\(=3\left(x^3-1\right)+x^3-3x^2+3x-1-4x\left(x^2-1\right)\)

\(=3x^3-3+x^3-3x^2+3x-1-4x^3+4x\)

\(=-3x^2+7x-4\)

\(=-3\cdot\left(-1\right)^2+7\cdot\left(-1\right)-4\)

=-3-4-7=-14

b: \(=27x^3y^3-8-3xy\left(9x^2y^2+6xy+1\right)\)

\(=27x^3y^3-8-27x^3y^3-18x^2y^2-3xy\)

\(=-18x^2y^2-3xy-8\)

\(=-18\cdot\left[\left(-2010\right)\cdot\left(-\dfrac{1}{2010}\right)\right]^2-3\cdot\left(-2010\right)\cdot\dfrac{-1}{2010}-8\)

\(=-18-3-8=-29\)

30 tháng 6 2017

Bài 2:

a, \(5x\left(x-1\right)=x-1\)

\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=1\end{matrix}\right.\)

Vậy...

b, \(2\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

Vậy...

c, \(x^3-\dfrac{1}{4}x=0\)

\(\Leftrightarrow x\left(x^2-\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{2}=0\\x+\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy...

Bài 3:

1, Đặt \(A=x^2+\dfrac{1}{2}x+\dfrac{1}{16}=x^2+\dfrac{1}{4}.x.2+\dfrac{1}{16}\)

\(=\left(x+0,25\right)^2\)

Thay x = 49,75 vào A ta có:
\(A=50^2=2500\)

2, tương tự

30 tháng 6 2017

bài 1 bn ơi

8 tháng 7 2016

Đặt \(A=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)

      \(B=\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)

    \(C=\frac{x+1}{2x^2+y+2}\)

Ta có: 

A = \(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-y^2-xy-y^2}=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)

=>A=\(\frac{x^2-y^2+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)

B=\(\frac{\left(2x^2\right)^2+2.2x^2.y+y^2-4}{x^2+xy+x+y}=\frac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}=\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)

=>\(P=\left(A:B\right):C\)

       \(=\left[\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}:\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)

       \(=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}.\frac{2x^2+y+2}{x+1}\)

        \(=\frac{1}{2y-x}\)

=>\(P=\frac{1}{2y-x}\)

Thế x=-1,76 và y=3/25 vào P

=>\(P=\frac{1}{2.\frac{3}{25}-1,76}=\frac{1}{2}\)

8 tháng 7 2016

\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)

\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right):\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)

\(P=\left(\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\right):\frac{2x^2+y+2}{x+1}\)

\(P=\left(\frac{2x^2+y-2}{2y-x}.\frac{x+1}{2x^2+y-2}\right).\frac{1}{x+1}\)

\(P=\frac{1}{2y-x}\)

Tại \(x=-1,76\) và \(y=\frac{3}{25}\) thì giá trị của \(Q=\frac{1}{2}\)

 

8 tháng 7 2016

thanks hihi

19 tháng 10 2017

1) x^2-1+2xy+y^2 = (x^2+2xy+y^2)-1 = (x+y)^2 - 1^2 = (x+y-1)*(x+y+1)

2) x^4-x^3-x+1 = (x^4-x)-(x^3-1) = x*(x^3-1)-(x^3-1) = (x^3-1)*(x-1)

3) 7x^2-63y^2 = 7*(x^2-9y^2) = 7*[x^2-(3y)^2] = 7*(x-3y)*(x+3y)

còn lại bn tự tính ik nha