Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(7x-x^2-6=0\)
\(\Rightarrow-x^2+7x-6=0\)
\(\Rightarrow-x^2+x+6x-6=0\)
\(\Rightarrow-x\left(x-1\right)+6\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(-x+6\right)=0\)
+) Nếu \(x-1=0\Rightarrow x=1\)
+) Nếu \(-x+6=0\Rightarrow x=6\)
Vậy x=1 hoặc x=6
b. \(8x^3-36x^2+57x-27=0\)
\(\Rightarrow\left(2x\right)^2-3.2^2.x^2.3+3.2x.3^2-3^3=0\)
\(\Rightarrow\left(2x-3\right)^3=0\)
\(\Rightarrow2x-3=0\Rightarrow x=\frac{3}{2}\)
Vậy...........
a) \(2\left(x+1\right)-1=3-\left(1-2x\right)\)
\(\Leftrightarrow2x+2-1=3-1+2x\)
\(\Leftrightarrow2x-2x=-2+1+3-1\)
\(\Leftrightarrow0x=1\)(vô lí)
Vậy tập nghiệm của phương trình trên bằng \(S=\varnothing\)
b)\(\left(5x-1\right)^2-x^2-8x-16=0\)
\(\Leftrightarrow\left(5x-1\right)^2-\left(x^2+8x+16\right)=0\)
\(\Leftrightarrow\left(5x-1\right)^2-\left(x+4\right)^2=0\)
\(\Leftrightarrow\left(5x-1-x-4\right)\left(5x-1+x+4\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(6x+3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}4x-5=0\\6x+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{4}\\x=-\frac{1}{2}\end{cases}}}\)
Vậy tập nghiệm của phương trình trên bằng\(S=\left\{\frac{5}{4};-\frac{1}{2}\right\}\)
#hoktot<3#
a) (2x - 1)(x^2 - 1 + 1) = 2x^3 - 3x^2 + 2
(2x - 1).x^2 = 2x^3 - 3x^2 + 2
2x^3 - x^2 = 2x^3 - 3x^2 + 2
-x^2 = -3x^2 + 2
2x^2 = 2
x^2 = 1
=> x = 1; -1
b) (x + 2)(x + 2) - (x - 2)(x - 2) = 8x
(x + 2)^2 - (x - 2)^2 = 8x
x^2 + 4x + 4 - x^2 + 4x - 4 = 8x
8x = 8x
=> x thuộc N*
c) (x + 1)(x + 2)(x + 5) - x^3 - 8x^2 = 27
x^3 + 5x^2 + 2x^3 + 10x + x^2 + 5x + 2x + 10x - x^3 - x^2 = 27
17x + 10 = 27
17x = 27 - 10
17x = 17
=> x = 1
d) (x + 1)(x^2 + 2x + 4) - x^3 - 3x^2 + 16 = 0
x^3 + 2x^2 + 4x + x^2 + 2x + 4 - x^3 - 3x^2 + 16 = 0
6x + 20 = 0
6x = -20
x = -20/6
=> x = -10/3
a.\(x^3-6x^2+12x-8=0\Rightarrow\)\(\left(x-2\right)^3=0\Rightarrow x=2\)
b.\(x^3+9x^2+27x+27=0\Rightarrow\left(x+3\right)^3=0\)\(\Rightarrow x=-3\)
c. \(8x^3-12x^2+6x-1=0\)
\(\Rightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow x=\frac{1}{2}\)
Bài 1 :
\(x^2\left(x-3\right)-4x+12=0\)
\(x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\left(x-3\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\left\{\pm2\right\}\end{cases}}}\)
Bài 2 :
\(x-1-x^2\)
\(=-\left(x^2-x+1\right)\)
\(=-\left[x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
Vì \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0\forall x\)
\(\Rightarrow-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\le0\forall x\left(đpcm\right)\)
a) 2x2+3x-5=0
=> 2x2+5x-2x-5=0
=> x(2x+5)-(2x-5)=0
=> (2x-5)(x-1)=0
=> 2x-5=0, x-1=0
=> x=5/2; 1
\(2x^2+3x-5=0< =>2x^2-2+3x-3=0\)
\(< =>2\left(x+1\right)\left(x-1\right)-3\left(x-1\right)=0\)
\(< =>\left(x-1\right)\left(2x-1\right)=0< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
\(8x^3-27=0\)
\(\Leftrightarrow8x^3=27\)
\(\Leftrightarrow x^3=\frac{27}{8}\)
\(\Leftrightarrow x=\frac{3}{2}\)
8x3-27=0
8x3=27
x3=27/8
x3=(3/2)3
x=3/2