Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{ab+am}{b\left(b+m\right)}\)
\(\frac{a+m}{b+m}=\frac{b\left(a+m\right)}{b\left(b+m\right)}=\frac{ab+bm}{b\left(b+m\right)}\)
Vì \(\frac{a}{b}<1\) => a < b
=> am < bm
=> ab + am < ab + bm
=> \(\frac{ab+am}{b\left(b+m\right)}<\frac{ab+bm}{b\left(b+m\right)}\)
=> \(\frac{a}{b}<\frac{a+m}{b+m}\)(Đpcm)
Trên máy mk hiển thị , câu hỏi này 4 phút nữa mới chính thức xuất hiện ,,, máy bị j hay do câu hỏi ak ??
ta có
a,\(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow a+m< b+m\)
vì \(a+m< b+m\)
nên \(\frac{a+m}{b+m}< 1\)
b,Ta có \(a+b>1\Leftrightarrow a+m>b+m\)
Vì \(a+m>b+m\)
nên \(\frac{a+m}{b+m}>1\)
ta xét tích: a.(b+1) = ab+a
b.(a+1) = ab+b
- Do a<b \(\Rightarrow\)ab+a<ab+b\(\Rightarrow\)a.(b+1)<b.(a+1)
Suy ra: \(\frac{a}{b}\)<\(\frac{a+1}{b+1}\)
\(\frac{b}{a}>1\Leftrightarrow b>a\)(luôn đúng với 0<a<5<b)
Vậy \(\frac{b}{a}>1\)