Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(\frac{1}{\left(x+2\right)}+\frac{1}{\left(x+3\right)}=\frac{1}{\left(x+2\right)\left(x+3\right)}\)
ĐKXĐ : \(x\ne-2;x\ne-3\)
\(\Leftrightarrow x+3+x+2=1\)
\(\Leftrightarrow2x=-4\)
\(\Leftrightarrow x=-2\) (không nhận)
Vậy : \(S=\varnothing\)
Giai phương trình sau :
a) \(\frac{10}{\left(x+5\right)\left(x-1\right)}+\frac{3}{1-x}=\frac{5}{x+5}\)
ĐKXĐ : \(x\ne1;x\ne-5\)
Với điều kiện trên ta có :
\(\Leftrightarrow\)\(\frac{10}{\left(x+5\right)\left(x-1\right)}+\frac{-3}{x-1}=\frac{5}{x+5}\)
\(\Leftrightarrow10-3\left(x+5\right)=5\left(x-1\right)\)
\(\Leftrightarrow10-3x-15=5x-5\)
\(\Leftrightarrow-8x=0\)
\(\Leftrightarrow x=0\) (nhận)
Vậy : \(S=\left\{0\right\}\)
Giải phương trình
a) \(\frac{2x}{x-1}-\frac{x}{x-2}=\frac{x^2}{\left(x-1\right)\left(x-2\right)}\left(x\ne1,x\ne2\right)\)
\(\Leftrightarrow\frac{2x\left(x-2\right)-x\left(x-1\right)-x^2}{\left(x-1\right)\left(x-2\right)}=0\)
\(\Rightarrow2x^2-x^2-x^2-4x+x=0\)
\(\Leftrightarrow-3x=0\Leftrightarrow x=0\left(tm\right)\)
KL: Vậy...
b)\(\frac{1}{x+2}-\frac{6}{x-1}+\frac{8}{\left(x+2\right)\left(x-1\right)}=0\left(x\ne-2,x\ne1\right)\)
\(\Leftrightarrow\frac{\left(x-1\right)-6\left(x+2\right)+8}{\left(x+2\right)\left(x-1\right)}=0\)
\(\Rightarrow x-1-6x-12+8=0\)
\(\Leftrightarrow-5x=-7\Leftrightarrow x=\frac{7}{5}\left(tm\right)\)
c) \(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x+3\right)\left(x-1\right)}\left(x\ne-3,x\ne1\right)\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)-\left(x+1\right)\left(x+3\right)-4}{\left(x+3\right)\left(x-1\right)}=0\)
\(\Rightarrow x^2+x-2-x^2-4x-3-4=0\)
\(\Leftrightarrow-3x=9\Leftrightarrow x=-3\left(ktm\right)\)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!