Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(f\left(x\right)=\dfrac{1}{3}x^4+3x^2+1\)
\(f\left(x\right)=\dfrac{1}{3}\left(x^4+9x^2+3\right)\)
\(f\left(x\right)=\dfrac{1}{3}\left[x^2\left(x^2+9\right)+3\right]\)
Vì \(x^2\left(x^2+9\right)+3>0\)
\(\Rightarrow f\left(x\right)>0\)
=>f(x) vô nghiệm=>đpcm
a/ f(x) = \(\frac{1}{3}x^4+\frac{3}{2}+1=\frac{1}{3}x^4+\frac{5}{2}\)
Ta có \(\frac{1}{3}x^4\ge0\)với mọi giá trị của x
=> \(\frac{1}{3}x^4+\frac{5}{2}>0\)với mọi giá trị của x
=> f (x) vô nghiệm (đpcm)
b/ \(P\left(x\right)=-x+x^5-x^2+x+1=x^5-x^2+1=x^2\left(x^3-1\right)+1\)
Ta có \(x^2\ge0\)với mọi giá trị của x
=> \(x^2\left(x^3-1\right)\ge0\)với mọi giá trị của x
=> \(x^2\left(x^3-1\right)+1>0\)với mọi giá trị của x
=> P (x) vô nghiệm (đpcm)
Bài 1:
a) Cho đa thức \(G\left(x\right)=-x-8=0\)
\(\Rightarrow-x=8\)
\(\Rightarrow x=-8\)
Vậy -8 là nghiệm của đa thức G(x).
b)Ta có: \(C\left(-2\right)=m.\left(-2\right)^2+2.\left(-2\right)+16=0\)
\(\Rightarrow C\left(x\right)=4m-4+16=0\)
\(\Rightarrow4m=-12\)
\(\Rightarrow m=-3\)
Bài 2.
a) Cho B(y)=-3y+5=0
\(\Rightarrow y=\dfrac{5}{3}\)
b) M(x)=2x2+1
Ta có: 2x2\(\ge0\)
nên: M(x)=2x2+1 \(\ge1\)
\(\Rightarrow M\left(x\right)\) không có nghiệm.
Các bài sau tương tự, không khó đâu bạn. Chúc bạn học tốt!