Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}-\sqrt{5+2\sqrt{6}}}}\)
\(=\sqrt{1+\sqrt{2}+\sqrt{3}-\left(\sqrt{3}+\sqrt{2}\right)}=1\)
b) \(A=\sqrt{x^2-6x+9}-\dfrac{x^2-9}{\sqrt{9-6x+x^2}}\)
\(=\left|x-3\right|-\dfrac{\left(x-3\right)\left(x+3\right)}{\left|x-3\right|}\)
Th1: x-3 < 0
\(A=\left(3-x\right)-\dfrac{\left(x-3\right)\left(x+3\right)}{3-x}=3-x+x-3=0\)
Th2: x-3 > 0
\(A=x-3-\dfrac{\left(x-3\right)\left(x+3\right)}{x-3}=x-3-\left(x+3\right)=-6\)
c)
Đk: x >/ 1 \(B=\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
\(=\dfrac{\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\dfrac{x-2}{\sqrt{x-1}}\)
\(=\dfrac{\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|}{\left|x-2\right|}\cdot\dfrac{x-2}{\sqrt{x-1}}\)
Th1: \(x-2\ge0\Leftrightarrow x\ge2\)
\(B=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}+1}{x-2}\cdot\dfrac{x-2}{\sqrt{x-1}}=\dfrac{2}{\sqrt{x-1}}\)
Th2: \(x-2\le0\Leftrightarrow x\le2\)
kết hợp với đk, ta được: 1 \< x \< 2
\(=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}-1}{2-x}\cdot\dfrac{x-2}{\sqrt{x-1}}=0\)
d) \(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)
chẳng biết có sai sót gì 0 nữa, xin lỗi tớ 0 xem lại đâu vì chán quá!
a) điều kiện xác định \(x-2\ge0vàx^2-4x+3\ge0\)
\(pt\Leftrightarrow x^2-4x+3=x-2\Leftrightarrow x^2-5x+5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{5}}{2}\\x=\dfrac{5-\sqrt{5}}{2}\left(L\right)\end{matrix}\right.\) bạn giải nó bằng cách giải den ta nha .
vậy \(x=\dfrac{5+\sqrt{5}}{2}\)
b) điều kiện xác định : \(x\ge1\)
đặc \(\sqrt{x-1}=t\left(t\ge0\right)\)
\(pt\Leftrightarrow2\left(\dfrac{t}{2}-3\right)=\dfrac{2.2t}{3}-\dfrac{1}{3}\) giải phương trình này rồi thế ngược lại là xong
c) điều kiện xác định : \(x\ge\dfrac{7}{9}\)
\(pt\Leftrightarrow9x-7=7x+5\Leftrightarrow x=6\) vậy \(x=6\)
d) câu cuối chờ nhát h mk chưa nghỉ ra
d) Ta có pt \(4+\sqrt{2x+6-6\sqrt{2x-3}}=\sqrt{2x-2+2\sqrt{2x-3}}=0\)
\(\Leftrightarrow4+\sqrt{2x-3-6\sqrt{2x-3}+9}=\sqrt{2x-3-2\sqrt{2x-3}+1}\Leftrightarrow4+\left|\sqrt{2x-3}-3\right|=\left|\sqrt{2x-3}-1\right|\)
Đặt \(\sqrt{2x-3}=a\left(a\ge0\right),pt\Leftrightarrow4+\left|a-3\right|=\left|a-1\right|\)
xét \(a\ge3,pt\Leftrightarrow4+a-3=a-1\Leftrightarrow0a=1\left(VN\right)\)
xét \(a\le1.pt\Leftrightarrow4+3-a=1-a\Leftrightarrow0a=6\left(VN\right)\)
xét \(3>x>1,pt\Leftrightarrow4+3-a=a-1\Leftrightarrow a=1\)(k thỏa mãn )
=> pt vô nghiệm !
Bài 3:
a: \(A=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{x-25}\)
\(=\dfrac{x-10\sqrt{x}+25}{x-25}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
b: \(B=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}=\dfrac{3}{\sqrt{x}+3}\)
a: \(=\dfrac{2x+1-x-\sqrt{x}-1}{x\sqrt{x}-1}=\dfrac{x-\sqrt{x}}{x\sqrt{x}-1}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
b: \(=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
c: \(=\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}+1\right)}{x-1}\)
\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}-x+\sqrt{x}+1}{x-1}=\dfrac{-x+\sqrt{x}+2}{x-1}\)
\(=\dfrac{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{x-1}=\dfrac{-\sqrt{x}+2}{\sqrt{x}-1}\)
a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
=>4x-4=2x-3
=>2x=1
hay x=1/2
b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>(2x-3)=4x-4
=>4x-4=2x-3
=>2x=1
hay x=1/2(nhận)
c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=-3/2 hoặc x=7/2
e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>căn (x-5)=2
=>x-5=4
hay x=9
a: \(A=\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\dfrac{4+\sqrt{3}}{5-2\sqrt{3}}}\)
\(=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}=-\sqrt{2}\)
b: \(B=\dfrac{x\sqrt{x}-2x+28}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}-\dfrac{x-16}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}-\dfrac{\left(\sqrt{x}+8\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}-2x+28-x+16-x-9\sqrt{x}-8}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}-4\sqrt{x}-9\sqrt{x}+36}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}=\dfrac{x-9}{\sqrt{x}+1}\)
Giải pt :
1
a. ĐKXĐ : \(x\ge4\)
Ta có :
\(\sqrt{x+3}-\sqrt{x-4}=1\\ \Leftrightarrow\sqrt{x+3}=1+\sqrt{x-4}\\ \Leftrightarrow x+3=x-3+2\sqrt{x-4}\\ \Leftrightarrow6=2\sqrt{x-4}\)
\(\Leftrightarrow3=\sqrt{x-4}\\ \Leftrightarrow x-4=9\)
\(\Leftrightarrow x=13\) (TM ĐKXĐ)
Vậy \(S=\left\{13\right\}\)
b.ĐKXĐ : \(-3\le x\le10\)
Ta có :
\(\sqrt{10-x}+\sqrt{x+3}=5\\ \Leftrightarrow13+2\sqrt{-x^2+7x+30}=25\\ \Leftrightarrow\sqrt{-x^2+7x+30}=6\\ \Leftrightarrow-x^2+7x+30=36\\ \Leftrightarrow-x^2+7x-6=0\\ \Leftrightarrow-x^2+x+6x-6=0\\ \Leftrightarrow-x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(TMĐKXĐ\right)\\x=6\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy \(S=\left\{1;6\right\}\)
Lời giải:
a)
\(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}=\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}+\frac{\sqrt{3}}{3}-\frac{2(3-\sqrt{3})}{(3+\sqrt{3})(3-\sqrt{3})}\)
\(=\frac{2-\sqrt{3}}{4-3}+\frac{\sqrt{3}}{3}-\frac{2(3-\sqrt{3})}{3^2-3}\)
\(=2-\sqrt{3}+\frac{\sqrt{3}}{3}-\frac{3-\sqrt{3}}{3}=\frac{6-3\sqrt{3}}{3}+\frac{2\sqrt{3}-3}{3}=\frac{3-\sqrt{3}}{3}\)
b)
\(\sqrt{x-3+2\sqrt{x-4}}=\sqrt{(x-4)+2\sqrt{x-4}+1}=\sqrt{(\sqrt{x-4}+1)^2}=|\sqrt{x-4}+1|=\sqrt{x-4}+1\)
c)
\(\sqrt{2x+4\sqrt{2x-4}}=\sqrt{(2x-4)+2.2\sqrt{2x-4}+2^2}\)
\(=\sqrt{(\sqrt{2x-4}+2)^2}=|\sqrt{2x-4}+2|=\sqrt{2x-4}+2\)
d)
\(\sqrt{x-\sqrt{2x-1}}=\frac{1}{\sqrt{2}}\sqrt{2x-2\sqrt{2x-1}}=\frac{1}{\sqrt{2}}\sqrt{(2x-1)-2\sqrt{2x-1}+1}\)
\(=\frac{1}{\sqrt{2}}\sqrt{(\sqrt{2x-1}-1)^2}=\frac{|\sqrt{2x-1}-1|}{\sqrt{2}}\)
e)
\(\sqrt{x+6\sqrt{x-9}}-\sqrt{x-9}=\sqrt{(x-9)+2.3\sqrt{x-9}+3^2}-\sqrt{x-9}\)
\(=\sqrt{(\sqrt{x-9}+3)^2}-\sqrt{x-9}=|\sqrt{x-9}+3|-\sqrt{x-9}\)
\(=\sqrt{x-9}+3-\sqrt{x-9}=3\)
Lời giải:
a)
\(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}=\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}+\frac{\sqrt{3}}{3}-\frac{2(3-\sqrt{3})}{(3+\sqrt{3})(3-\sqrt{3})}\)
\(=\frac{2-\sqrt{3}}{4-3}+\frac{\sqrt{3}}{3}-\frac{2(3-\sqrt{3})}{3^2-3}\)
\(=2-\sqrt{3}+\frac{\sqrt{3}}{3}-\frac{3-\sqrt{3}}{3}=\frac{6-3\sqrt{3}}{3}+\frac{2\sqrt{3}-3}{3}=\frac{3-\sqrt{3}}{3}\)
b)
\(\sqrt{x-3+2\sqrt{x-4}}=\sqrt{(x-4)+2\sqrt{x-4}+1}=\sqrt{(\sqrt{x-4}+1)^2}=|\sqrt{x-4}+1|=\sqrt{x-4}+1\)
c)
\(\sqrt{2x+4\sqrt{2x-4}}=\sqrt{(2x-4)+2.2\sqrt{2x-4}+2^2}\)
\(=\sqrt{(\sqrt{2x-4}+2)^2}=|\sqrt{2x-4}+2|=\sqrt{2x-4}+2\)
d)
\(\sqrt{x-\sqrt{2x-1}}=\frac{1}{\sqrt{2}}\sqrt{2x-2\sqrt{2x-1}}=\frac{1}{\sqrt{2}}\sqrt{(2x-1)-2\sqrt{2x-1}+1}\)
\(=\frac{1}{\sqrt{2}}\sqrt{(\sqrt{2x-1}-1)^2}=\frac{|\sqrt{2x-1}-1|}{\sqrt{2}}\)
e)
\(\sqrt{x+6\sqrt{x-9}}-\sqrt{x-9}=\sqrt{(x-9)+2.3\sqrt{x-9}+3^2}-\sqrt{x-9}\)
\(=\sqrt{(\sqrt{x-9}+3)^2}-\sqrt{x-9}=|\sqrt{x-9}+3|-\sqrt{x-9}\)
\(=\sqrt{x-9}+3-\sqrt{x-9}=3\)