Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5x-10x^2\) = \(5x\left(1-2x\right)\)
b) Mạn phép sửa đề:
\(\dfrac{1}{2}x\left(x^2-4\right)+4\left(x+2\right)\) = \(\left(x+2\right)\left[\dfrac{1}{2}x\left(x-2\right)+4\right]\)
= \(\left(x+2\right)\left(\dfrac{1}{2}x^2-x+4\right)\)
c) \(x^4-y^6=\left(x^2-y^3\right)\left(x^2+y^3\right)\)
e) \(x^3-4x^2+4x-1=x^3-x^2-3x^2+3x+x-1\)
= \(x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2-3x+1\right)\)
g) \(x^4+6x^3-12x^2-8x\)
= \(x\left(x^3-2x^2+8x^2-16x+4x-8\right)\)
= \(x\left[x^2\left(x-2\right)+8x\left(x-2\right)+4\left(x-2\right)\right]\)
= \(x\left(x-2\right)\left(x^2+8x+4\right)\)
h) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\) (*)
Đặt \(x^2+4x+8=a\) => (*) trở thành:
\(a^2+3ax+2x^2\) = \(a^2+ãx+2ax+x^2\)
= \(a\left(a+x\right)+2x\left(a+x\right)\)
= \(\left(a+x\right)\left(a+2x\right)\) (1)
Thay \(a=x^2+4x+8\) vào (1) ta được:
\(\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
=\(\left(x^2+5x+8\right)\left(x^2+2x+4x+8\right)\)
= \(\left(x^2+5x+8\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]\)
= \(\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)
P/s: Còn câu f đang suy nghĩ!
a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^3+1\right)-\left(x^3-1\right)\)
\(=x^3+1-x^3+1\)
\(=2\)
Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.
b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)
\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)
\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)
\(=27\)
Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.
c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)
\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
\(=-65\)
Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.
d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
\(=0\)
Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.
a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=24-11x\)
b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)
\(=8x^2y-6y^2-9x^2y+12y^2\)
\(=6y^2-x^2y\)
c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)
\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)
\(=4y^3+y^2+6xy^2\)
a, (x+3)(x2-3x+9) - (54+x3)
=x3 + 27 - 54 - x3= - 27
b, (2x +y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)
=8x3+y3 - (8x3 -y3)=2y3
a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) - (54 + x3)
= x3 + 33 - (54 + x3)
= x3 + 27 - 54 - x3
= -27
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]
= [(2x)3 + y3]- [(2x)3 - y3]
= (2x)3 + y3- (2x)3 + y3= 2y3
Bài giải:
a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) - (54 + x3)
= x3 + 33 - (54 + x3)
= x3 + 27 - 54 - x3
= -27
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]
= [(2x)3 + y3]- [(2x)3 - y3]
= (2x)3 + y3- (2x)3 + y3= 2y3