Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử đa thức bậc 4 đó là
f(x) = ax4 + bx3 + cx2 + dx + e
=> f(0) = e chia hết cho 7 => e chia hết cho 7
=> f(1) = a + b + c + d + e (1) chia hết cho 7
=> f(-1) = a - b + c - d + e(2) chia hết cho 7
=> f(2) = 16a + 8b + 4c + 2d + e (3) chia hết cho 7
=> f(-2) = 16a - 8b + 4c - 2d + e (4) chia hết cho 7
Lấy (1) + (2) được 2a + 2c + 2e chia hết cho 7 => a + c chia hết cho 7
Lấy (1) - (2) được 2b + 2d chia hết cho 7 => b + d chia hết cho 7
Làm tiếp rồi suy luận ra được ĐPCM
2/ Ta có
2x2 - 6y2 = xy
<=> (2x2 - 4xy) + (- 6y2 + 3xy ) = 0
<=> (x - 2y)(2x + 3y) = 0
Thế giá trị x,y vô là tìm được đáp án nhé
1. Công thức tính tổng các hệ số của f(x) là: \(a_n+a_{n-1}+a_{n-2}+...+a_1+a_0\)
2. Công thức tính tổng các hệ số của:
- Lũy thừa bậc chẵn là: \(a_0+a_2+a_4+a_6+...+a_{2k-2}+a_{2k}\)với k = n/2 khi n chẵn và k = (n-1)/2 với n lẻ.
- Lũy thừa bậc lẻ là: \(a_1+a_3+a_5+a_7+...+a_{2k-3}+a_{2k-1}\)với k = n/2 khi n chẵn và k = (n+1)/2 với n lẻ.
\(1.\text{ }f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)
\(2.\)
+Trường hợp 1: n chẵn
\(f\left(-1\right)=a_n-a_{n-1}+...-a_1+a_0\)
\(\Rightarrow a_n+a_{n-2}+...+a_0-\left(a_{n-1}+a_{n-3}+...+a_1\right)=f\left(-1\right)\)
Mà \(\left(a_n+a_{n-2}+...+a_0\right)+\left(a_{n-1}+a_{n-3}+...+a_1\right)=f\left(1\right)\)
Cộng theo vế, ta được \(a_n+a_{n-2}+...+a_0=\frac{f\left(1\right)+f\left(-1\right)}{2}\)
Trừ theo vế, ta được: \(a_{n-1}+a_{n-3}+...+a_1=\frac{f\left(1\right)-f\left(-1\right)}{2}\)
+Trường hợp 2: n lẻ.
Làm tương tự, ta được:
\(a_n+a_{n-2}+...+a_3+a_1=\frac{f\left(1\right)-f\left(-1\right)}{2}\)
\(a_{n-1}+a_{n-3}+...+a_0=\frac{f\left(1\right)+f\left(-1\right)}{2}\)