Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
a) \(\Delta=4m^2-4\left(3m-4\right)=4m^2-12m+16=\left(2m-3\right)^2+7>0\)với mọi m=> pt (1) có nghiệm phân biệt với mọi m
b)áp dụng đ.lí Viét ta có: \(x_1+x_2=2m\); \(x_1.x_2=m^2+3m-4\)
\(x_1^2+x_2^2=\left(x1+x2\right)^2-2x1.x2=4m^2-2\left(m^2+3m-4\right)=4m^2-2m^2-6m+8\)
\(=2\left(m^2+3m-4\right)=2\left[\left(m+\frac{3}{2}\right)^2-4-\frac{9}{4}\right]=2\left[\left(m+\frac{3}{2}\right)^2-\frac{25}{4}\right]\)
A đặt giá trị nhỏ nhất khi m = -3/2
Bài 2. \(x^2-mx+m-1=0\)(1)
a) Phương trình (1) có: \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0,\forall m\)
Suy ra phương trình luôn có nghiệm với mọi m
b) Áp dụng định lí Vi ét ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)
Ta có: \(x_1^2-x_2^2+x_1+x_2=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)+\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=0\)
<=>\(\orbr{\begin{cases}x_1+x_2=0\\x_1-x_2+1=0\end{cases}}\)
+) Với \(x_1+x_2=0\Leftrightarrow m=0\)(tm)
+) Với \(x_1-x_2+1=0\Leftrightarrow x_1=-1+x_2\)
Ta có \(x_1+x_2=m\Leftrightarrow-1+x_2+x_2=m\Leftrightarrow x_2=\frac{m+1}{2}\)
=> \(x_1=-1+x_2=-1+\frac{m+1}{2}=\frac{m-1}{2}\)
ta lại có: \(x_1.x_2=m-1\Leftrightarrow\frac{m+1}{2}.\frac{m-1}{2}=m-1\Leftrightarrow\orbr{\begin{cases}m-1=0\\\frac{m+1}{4}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}}\)(TM)
Vậy
Sửa lại :
2b)
\(x_1^2-x_2^2+x_1-x_2=0\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x_1-x_2=0\\x_1+x_2+1=0\end{cases}}\)
Với \(x_1-x_2=0\Leftrightarrow x_1=x_2\)
Ta có:\(x_1+x_2=m\Leftrightarrow2x_1=m\Leftrightarrow x_1=x_2=\frac{m}{2}\)
\(x_1.x_2=m-1\Leftrightarrow\frac{m}{2}.\frac{m}{2}=m-1\Leftrightarrow m^2=4m-4\Leftrightarrow\left(m-2\right)^2=0\Leftrightarrow m=2\)
+) Với \(x_1+x_2+1=0\Leftrightarrow m+1=0\Leftrightarrow m=-1\)
Vậy m=-1 hoặc m=2
a) Phương trình (1) có nghiệm x=-2 khi:
(-2)2-(m+5).(-2)-m+6=0
<=> 4+2m+10-m+6=0
<=> m=-20
b) \(\Delta=\left(m+5\right)^2-4\left(-m+6\right)=m^2+10m+25+4m-24=m^2+14m+1\)
Phương trình (1) có nghiệm khi \(\Delta=m^2+14m+1\ge0\)(*)
Với điều kiện trên, áp dụng định lý Vi-et ta có:
\(S=x_1+x_2=m+5;P=x_1\cdot x_2=-m+6\)
Khi đó:
\(x_1^2x_2+x_1x_2^2=24\)<=> \(x_1x_2\left(x_1+x_2\right)=24\)
<=> (-m+6)(m+5)=24
<=> m2-m-6=0
<=> m=3; m=-2
Giá trị m=3 (tm), m=-2 (ktm) điều kiện (*)
Vậy m=3 là giá trị cần tìm
\(\left\{{}\begin{matrix}x+y=3m\\x-2y=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=m+1\\x=2m-1\end{matrix}\right.\)
\(x^2+xy=30\)
\(\Leftrightarrow\left(2m-1\right)^2+\left(2m-1\right)\left(m+1\right)-30=0\)
\(\Leftrightarrow6m^2-3m-30=0\Rightarrow\left[{}\begin{matrix}m=-2\\m=\frac{5}{2}\end{matrix}\right.\)
Bài 2:
\(a+b+c=1-m+m-1=0\Rightarrow\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)
a/ TH1: \(x_1=2x_2\Rightarrow1=2\left(m-1\right)\Rightarrow m=\frac{3}{2}\)
Th2: \(x_2=2x_1\Rightarrow m-1=2\Rightarrow m=3\)
b/ \(A=x_1^2+x_2^2-6x_1x_2\)
\(A=1+\left(m-1\right)^2-6\left(m-1\right)=8\)
\(\Rightarrow\left(m-1\right)^2-6\left(m-1\right)-7=0\)
\(\Rightarrow\left[{}\begin{matrix}m-1=-1\\m-1=7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=8\end{matrix}\right.\)
\(A=\left(m-1\right)^2-6\left(m-1\right)+1=\left(m-1\right)^2-6\left(m-1\right)+9-8\)
\(A=\left(m-1-3\right)^2-8=\left(m-4\right)^2-8\ge-8\)
\(\Rightarrow A_{min}=-8\) khi \(m=4\)