Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)
\(=\frac{-5x-5y-5z}{21}\)
\(=\frac{-5\left(x+y\right)-5z}{21}\)
\(=\frac{-5\left(-z\right)-5z}{21}\)
\(=\frac{5z-5z}{21}\)
\(=\frac{0}{21}\)
\(=0\)
1.
A=\(\frac{-5x+-5y+-5z}{21}=\frac{-5\left(x+y+z\right)}{21}=\frac{-5}{21}.x+y+z\)
A= -z+z=0
<p style="padding: 10000000000000000px;" class="alert success"></p>
A=\(\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)=\(\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}=\frac{-5.\left(x+y+z\right)}{21}\)vì x+y=z \(\Rightarrow\)x+y là số đối của z
\(\Rightarrow\)x+y+z=0
\(\Rightarrow\frac{-5}{21}.x+y+z=\frac{-5}{21}.0=0\)
\(\Rightarrow\)A=0
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5o}{21}=-\frac{5}{21}\left(x+y+o\right)\)
\(=-\frac{5}{21}\left(-o+o\right)=0\)
Ta có :
A = \(\frac{-5.x}{21}+\frac{-5.y}{21}+\frac{-5.z}{21}\)
= \(\frac{-5}{21}.\left(x+y+z\right)\)
= \(\frac{-5}{21}.\left(-z+z\right)\)
= \(\frac{-5}{21}.0\)
= 0
Vậy A = 0
Bài 1:
a) \(\Rightarrow XY=4.21=84\)
Rồi tìm các cặp số thỏa mãn đi. Cả âm dương nhé.
b) \(\Rightarrow91Z=49.52=2548\)
\(\Rightarrow Z=2548:91=28\)
Bài 2: (Dạng này mới xem áp dụng luôn)
Gọi \(d\)là ước chung của \(n;n+1\)
\(\Rightarrow n⋮d\)và \(n+1⋮d\)
\(\Rightarrow n-\left(n+1\right)⋮d\)
\(\Rightarrow n-n-1⋮d\)
\(\Rightarrow-1⋮d\Rightarrow d=1;-1\)
Tử và số chỉ có ước chung là 1;-1 nên phân số \(\frac{n}{n+1}\)tối giản (đpcm)
Rút gọn phân số : \(\frac{12}{16}=\frac{12:4}{16:4}=\frac{3}{4}\)
Ta có : \(\frac{3}{4}=\frac{x}{4}\)
\(\Rightarrow3=x\Leftrightarrow x=3\)
Ta lại có : \(\frac{3}{4}=\frac{21}{y}\)
\(\Rightarrow3y=84\)
\(\Rightarrow y=84:3=28\)
Ta lại có : \(\frac{3}{4}=\frac{z}{80}\)
\(\Rightarrow3\cdot80=4z\)
\(\Rightarrow z=\frac{3\cdot80}{4}=60\)
bài 1:rất dễ,nhân chéo sẽ giải đc
bài 2: x+y=-x
=>x+y+z=0
Ta có: \(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}=\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}=\frac{-5.\left(x+y+z\right)}{21}=\frac{0}{21}=0\)
bài 1:
\(\frac{1}{2a^2+1}:x=2\)
\(\Leftrightarrow\frac{1}{2a^2+1}.\frac{1}{x}=2\)
\(\Leftrightarrow\frac{1}{\left(2a^2+1\right).x}=2\)
\(\Leftrightarrow x=\frac{1}{\frac{\left(2a^2+1\right)}{2}}=\frac{1}{2a^2+1}.\frac{1}{2}=\frac{1}{\left(2a^2+1\right).2}=\frac{1}{4a^2+2}\)