Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔKBD có
BA=BK
\(\widehat{ABD}=\widehat{KBD}\)
BD chung
Do đó: ΔABD=ΔKBD
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a/ Xét \(\Delta ABD\) và \(\Delta KBD\)
AB=BK (gt); BD chung
\(\widehat{ABD}=\widehat{KBD}\) (gt)
\(\Rightarrow\Delta ABD=\Delta KBD\left(c.g.c\right)\Rightarrow AD=DK\)
b/
\(\Delta ABD=\Delta KBD\Rightarrow\widehat{BAC}=\widehat{BKD}=90^o\Rightarrow DK\perp BC\)
\(AH\perp BC\left(gt\right)\)
=> AH//DK (cùng vuông góc với BC)
c/
Gọi M' là giao của BD với CE. Xét \(\Delta BCE\) có
\(EK\perp BC,CA\perp BE\)=> D là trực tâm của \(\Delta BCE\Rightarrow BM\perp CE\) (trong tam giác 3 đường cao đồng quy tại 1 điểm gọi là trực tâm của tam giác)
Mà BM là phân giác của \(\widehat{ABC}\Rightarrow\Delta BCE\) cân tại B (trong tam giác đường cao đồng thời là đường phân giác thì tg đó là tg cân)
=> BM' là đường trung tuyến (trong tg cân đường cao xp từ đỉnh đồng thời là đường trung tuyến của tam giác)
=> M' là trung điểm của CE, mà M cũng là trung điểm của CE => M trùng M' => B, D, M thẳng hàng