K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6) c) x3 - x2 + x = 1

<=> x3 - x2 + x - 1 = 0

<=> (x3 - x2) + (x - 1) = 0

<=> x2 (x - 1) + (x - 1) = 0

<=> (x - 1) (x2 + 1) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

* x - 1 = 0 => x = 1

* x2 + 1 = 0 => x2 = -1 => x = -1

Vậy x = 1 hoặc x = -1

15 tháng 11 2019

Bài 5: 

a) Đặt   \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{8}\)

b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)

=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)

\(=\left(7x+6-5+6x\right)^2\)

\(=\left(13x+1\right)^2\)

14 tháng 7 2019

a) \(4x^2-4x+1=\left(2x-1\right)^2\)

14 tháng 7 2019

\(3x\left(x-5\right)-x\left(4+3x\right)=43\)

\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)

\(\Leftrightarrow-19x=43\)

\(\Leftrightarrow x=\frac{-43}{19}\)

13 tháng 7 2019

Phần a? phải là \(4a^2-4a+1\)chứ 

a) \(4a^2-4a+1=\left(2a\right)^2+2.2a+1\)

                                 \(=\left(2a+1\right)^2\)

b) \(9x^2-25y^2=\left(3x\right)^2-\left(5y\right)^2\)

                            \(=\left(3x-5y\right)\left(3x+5y\right)\)

c) \(1-2x+a^2=\left(1-a\right)^2\)

d) \(\left(2x+1\right)-2.\left(2x+1\right)\left(3x-y\right)+\left(3x-y\right)^2\)

\(=\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)

13 tháng 7 2019

nếu có sai thì bn thông cảm

1.

b) nó là hằng đẳng thức rồi bn nhá

c) \(1-2a+a^2\)\(1^2-2a1+a^2\)=\(\left(1-a\right)^2\)

d)\(\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)=\(\left(2x+1-3x+y\right)^2\)=\(\left(1-x+y\right)^2\)

2.

a)\(\left(\frac{1}{2}x\right)^2-\left(3y\right)^2\)=\(\left(\frac{x}{2}-3y\right)\left(\frac{x}{2}+3y\right)\)

b) Ko khai triển đc

c) \(4x^2+2xy+\frac{1}{4}y^2\)

Bài 1:

\(B=\dfrac{1}{9}x^2-2x+9\)

\(=\left(\dfrac{1}{3}x\right)^2-2\cdot\dfrac{1}{3}x\cdot3+3^2=\left(\dfrac{1}{2}x-3\right)^2\)

\(C=x^3-9x^2+27x-27=\left(x-3\right)^3\)

\(D=27x^3+27x^2+9x+1=\left(3x+1\right)^3\)

\(E=\left(x-2y\right)^3\)

6 tháng 9 2020

1. ( 2x + y )( 4x2 - 2xy + y2 ) - 8x3 - y3 - 16

= [ ( 2x )3 + y3 ] - 8x3 - y3 - 16

= 8x3 + y3 - 8x3 - y3 - 16

= -16 ( đpcm )

2. ( 3x + 2y )2 + ( 3x + 2y )2 - 18x2 - 8y2 + 3

= 2( 3x + 2y )2 - 18x2 - 8y2 + 3

= 2( 9x2 + 12xy + 4y2 ) - 18x2 - 8y2 + 3

= 18x2 + 24xy + 8y2 - 18x2 - 8y2 + 3

= 24xy + 3 ( có phụ thuộc vào biến )

3. ( -x - 3 )3 + ( x + 9 )( x2 + 27 ) + 19

= -x3 - 9x2 - 27x - 27 + x3 + 9x2 + 27x + 243 + 19

= -27 + 243 + 19 = 235 ( đpcm )

4. ( x - 2 )3 - x( x + 1 )( x - 1 ) + 13( x - 4 )

= x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 13x - 52

= x3 - 6x2 + 12x - 8 - x3 + x + 13x - 52

= -6x2 + 26x - 60 ( có phụ thuộc vào biến )

6 tháng 9 2020

1. (2x+y).(4x2-2xy+y2)-8x3-y3-16

=(2x)3+y3-8x3-y3-16

=-16

Vậy đa thức trên kh phụ thuộc vào biến x

2. (3x+2y)2+(3x+2y)2-18x2-8y2+3

=(9x2+12xy+4y2)+(9x2+12xy+4y2)-18x2-8y2+3

=9x2+12xy+4y2+9x2+12xy+4y2-18x2-8y2+3

=24xy+3

Vậy đa thức trên phụ thuộc biến x

22 tháng 7 2018

a) \(^{x^4-y^4}\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left[\left(x-y\right).\left(x+y\right)\right].\left(x^2-y^2\right)\)

\(=\left(x-y\right).\left(x+y\right).\left(x^2-y^2\right)\)

c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)

\(=\left[\left(3x-2y\right)+\left(2x-3y\right)\right].\left[\left(3x-2y\right)-\left(2x-3y\right)\right]\)

\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)

b) \(x^2-3y^2\)

\(=\left(x-3y\right)\left(x+3y\right)\)

d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)

\(=9\left(x-y\right)^2+4\left(x-y\right)^2\)

\(=\left(x-y\right).\left(9+4\right)\)

\(=\left(x-y\right).13\)

\(=13\left(x-y\right)\)

f) \(x^3+27\)

\(=x^3+3^3\)

\(=\left(x+3\right)\left(x^2-x.3+3^2\right)\)

h) \(125x^3-1\)

\(=\left(5x\right)^3-1^3\)

\(=\left(5x-1\right)\left(5x^2+5x.1+1^2\right)\)

\(=\left(5x-1\right)\left(5x^2+5x+1\right)\)

22 tháng 7 2018

\(a,x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)=\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)\)

\(b,x^2-3y^2=\left(x+\sqrt{3}y\right)\left(x-\sqrt{3}y\right)\)

cn lại tg tự nha bn

7 tháng 9 2017
ở trong sách nào đó bạn