Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2^2+4^2+6^2+...+20^2\)
\(=1^2.2^2+2^2.2^2+3^2.2^2+...+10^2.2^2\)
\(=\left(1^2+2^2+3^2+...+10^2\right).2^2\)
\(=385.4\)
\(=1540\)
\(b,\left(0.25\right)^2+\left(0.5\right)^2+...+\left(2.5\right)^2\)
\(=1^2.0,25^2+2^2.0,25^2+...+10^2.0,25^2\)
\(=\left(1^2+2^2+...+10^2\right).0,25^2\)
\(=385.0.0625\)
\(=24.0625\)
a/ Có tự ghi lại đề
= ((2+8)+(4+6)+10+(12+18)+(14+16)+20))^2
= ((10+10+10+30+30+20))^2
=(110)^2
=100^2+10^2
=10000+100
=10100
\(A=\left(3\dfrac{1}{3}+2,5\right):\left(3\dfrac{1}{6}-4\dfrac{1}{5}\right)-\dfrac{11}{31}\\ =\left(\dfrac{10}{3}+\dfrac{5}{2}\right):\left(\dfrac{19}{6}-\dfrac{21}{5}\right)-\dfrac{31}{11}\\ =\left(\dfrac{30}{6}+\dfrac{15}{6}\right):\left(\dfrac{95}{30}-\dfrac{126}{30}\right)-\dfrac{31}{11}\\ =\dfrac{45}{6}:\dfrac{-21}{30}-\dfrac{31}{11}\\ =\dfrac{15}{2}\times\dfrac{-10}{7}-\dfrac{31}{11}=-\dfrac{75}{7}-\dfrac{31}{11}=-\dfrac{825}{77}-\dfrac{217}{77}=\dfrac{-1042}{77}\)
\(B=\left(-6\right).10:\left[-0,25+\dfrac{1}{2}:\left(-2\right)\right]+1\dfrac{3}{4}\\ =-60:\left(\dfrac{-1}{4}+\dfrac{1}{2}.\dfrac{-1}{2}\right)+1\dfrac{3}{4}\\ =-60:\left(\dfrac{-1}{4}+\dfrac{-1}{4}\right)+1\dfrac{3}{4}\\ =-60:\left(\dfrac{-1}{2}\right)+1\dfrac{3}{4}=120+1\dfrac{3}{4}=121\dfrac{3}{4}\)
a)A=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
a) A= \(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
A=\(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)( vận dụng quy tắc dấu ngoặc)\(A=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{100}\right)\) = \(\frac{1}{100}-\frac{99}{100}\) = \(\frac{-98}{100}\) = \(\frac{-49}{50}\)
Các câu đúng: b,e
Các câu sai: a, c, d; f.
a) \(\left(-5\right)^2.\left(-5\right)^3=\left(-5\right)^5\);
c) \(\left(0,2\right)^{10}:\left(0,2\right)^5=\left(0,2\right)^{10-5}=0,2^5\);
d) \(\left[\left(-\dfrac{1}{7}\right)^2\right]^4=\left(-\dfrac{1}{7}\right)^{2.4}=\left(-\dfrac{1}{7}\right)^8\)
f \(\dfrac{8^{10}}{4^8}=\dfrac{\left(2^3\right)^5}{\left(2^2\right)^8}=\dfrac{2^{15}}{2^{16}}=\dfrac{1}{2}\)
C = \(25.\left(\frac{-1}{3}\right)^3\) \(+\frac{1}{5}\) \(-2.\left(\frac{-1}{2}\right)^2\) \(-\frac{1}{2}\)
C = \(25.\left(\frac{-1}{27}\right)+\frac{1}{5}\) \(-2.\frac{1}{4}\) \(-\frac{1}{2}\)
C = \(\frac{-25}{27}\) \(+\frac{1}{5}\) \(-\frac{1}{2}\) \(-\frac{1}{2}\)
C = \(\frac{-25}{27}\) \(+\frac{1}{5}\) \(-1\)
C = \(\frac{-125}{135}\) \(+\frac{27}{135}\) \(-\frac{135}{135}\)
C = \(\frac{-233}{135}\)
D = \(-8.\left(\frac{3}{4}-\frac{1}{4}\right):\left(\frac{9}{4}-\frac{7}{6}\right)\)
D = \(-8.\frac{1}{2}\) \(.\frac{12}{13}\)
D = \(-4.\frac{12}{13}\)
D = \(\frac{-48}{13}\)
E = \(5\sqrt{16}\) \(-4\sqrt{9}\) \(+\sqrt{25}\) \(-0,3\sqrt{400}\)
E = \(5.4-4.3+5-0,3.20\)
E = \(20-12+5-6\)
E = \(8+\left(-1\right)\)
E = \(7\)
F = \(\left(\frac{-3}{2}\right)\) \(+\left|\frac{-5}{6}\right|\) \(-1\frac{1}{2}\) \(:6\)
F = \(\left(\frac{-3}{2}\right)\) \(+\frac{5}{6}\) \(-\frac{3}{2}\) \(.\frac{1}{6}\)
F = \(\left(\frac{-3}{2}\right)\) \(+\frac{5}{6}\) \(-\frac{1}{4}\)
F = \(\left(\frac{-18}{12}\right)\) \(+\frac{10}{12}\) \(-\frac{3}{12}\)
F = \(\frac{-11}{12}\)
Chúc cậu hk tốt ~
Ta có :
\(S=\left(0,25\right)^2+\left(0,5\right)^2+...+\left(2,5\right)^2\)
\(\Rightarrow4S=2^2.\left(0,25\right)^2+2^2.\left(0,5\right)^2+.....+2^2.\left(2,5\right)^2\)
\(\Rightarrow4S=1^2+2^2+....+10^2\)
\(\Rightarrow4S=385\)
\(\Rightarrow S=\frac{385}{4}\)