Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
a, \(4x^2+y\left(y-4x\right)-9\)
\(=4x^2+y^2-4xy-9\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y+3\right)\left(x-y-3\right)\)
1.
b) \(a^2-b^2+a-b\)
\(=\left(a^2-b^2\right)+\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b+1\right)\)
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
Bài 2.
a) x(x-2)-x+2=0
<=> x2-2x-x+2=0
<=> x2-3x+2=0
<=> x2-x-2x-2=0
<=> x(x-1)-2(x-1)=0
<=> (x-1)(x-2)=0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
b) x2(x2+1)-x2-1=0
<=> x4+x2-x2-1=0
<=> x4-1=0
<=> x4=1
<=> x=\(\pm\)1
cau 1
ta có 4x^2+2x+3
suy ra (2x)^2+2*x*1 +1^2 +2
suy ra (2x+1)^2+2
mà:
(2x+1)^2>=0
suy ra:(2x+1)^2 +2>=2
dấu = xảy ra khi và chỉ khi:
2x+1=0
suy ra 2x=-1
suy ra x=-1/2
câu2 dễ
câu 3 nâng cao phát triển trang 75
a) \(x^3-4x^3+8x-8\)
\(=x^3-8+8x-4x^2\)
\(=\left(x-2\right)\left(x^2-2x+4\right)+4x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-2x+4+4x\right)=\left(x-2\right)\left(x^2+2x+4\right)\)
\(x^5+x^4-4x^3+x^2-x-2=\left(x^2-x-1\right)\left(x^3+2x^2-x+2\right)\)
Phân tích đa thức thành nhân tử " tự nhân vào là ra "
\(\left(x^2-x-1\right)=0\)
\(x^3+2x^2-x+2=0\)
\(\left(x^2-x-1\right)\hept{\begin{cases}\Delta=5\\x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\end{cases}}\)
ta có
\(\frac{1}{2}+\frac{\sqrt{5}}{2}+\frac{1}{2}-\frac{\sqrt{5}}{2}=1\)
thỏa mãn a+b=1 " bài có 3 nghiệm , x3 = -1 ko thỏa mãn a+b=1) vậy chỉ lấy 2 nghiệm thôi "
\(ab=\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right)+\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right)=\frac{1}{4}-\frac{25}{4}=\frac{-24}{4}=-6\)