Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=\dfrac{sin^4x-cos^4x+cos^2x}{2\left(1-cosx\right)\left(1+cosx\right)}\)
\(B=\dfrac{\left(sin^2x\right)^2-\left(cos^2x\right)^2+cos^2x}{2\left(1-cos^2x\right)}\)
\(B=\dfrac{\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+cos^2x}{2\left(sin^2x+cos^2x-cos^2x\right)}\)
\(B=\dfrac{sin^2x-cos^2x+cos^2x}{2sin^2x}=\dfrac{sin^2x}{2sin^2x}=\dfrac{1}{2}\)
b) \(\dfrac{1+sin2x-cos2x}{1+sin2x+cos2x}=tanx\)
\(VT=\dfrac{1+2sinx.cosx-\left(1-2sin^2x\right)}{1+2sinx.cosx+2cos^2x-1}\)
\(VT=\dfrac{1+2sinx.cosx-1+2sin^2x}{2sinx.cosx+2cos^2x}\)
\(VT=\dfrac{2sinx.cosx+2sin^2x}{2sinx.cosx+2cos^2x}\)
\(VT=\dfrac{2sinx\left(cosx+sinx\right)}{2cosx\left(sinx+cosx\right)}=\dfrac{sinx}{cosx}=tanx=VP\) ( đpcm )
p/s : sửa \(cos1x\rightarrow cos2x\)
\(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x}\)
\(=cos^2x.\left(\frac{cos^2x}{sin^2x}\right)=cot^2x.cos^2x\)
\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{\left(cosx-sinx\right)\left(cosx+sinx\right)}\)
\(=\frac{cos^2x+sin^2x+2sinx.cosx-\left(cos^2x+sin^2x-2sinx.cosx\right)}{cos^2x-sin^2x}=\frac{4sinx.cosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)
\(\frac{sin4x+cos2x}{1-cos4x+sin2x}=\frac{2sin2x.cos2x+cos2x}{1-\left(1-2sin^22x\right)+sin2x}=\frac{cos2x\left(2sin2x+1\right)}{sin2x\left(2sin2x+1\right)}=\frac{cos2x}{sin2x}=cot2x\)
\(A=sin^2x\left(sinx+cosx\right)+cos^2x\left(sinx+cosx\right)\)
\(=\left(sin^2x+cos^2x\right)\left(sinx+cosx\right)=sinx+cosx\)
\(B=\frac{sinx}{cosx}\left(\frac{1+cos^2x-sin^2x}{sinx}\right)=\frac{sinx}{cosx}\left(\frac{2cos^2x}{sinx}\right)=2cosx\)
a: \(VT=\dfrac{cot^2x}{1+cot^2x}\cdot\dfrac{1+tan^2x}{tan^2x}\)
\(=\dfrac{cot^2x}{\dfrac{1}{sin^2x}}\cdot\dfrac{\dfrac{1}{cos^2x}}{tan^2x}\)
\(=\dfrac{cot^2x}{tan^2x}\cdot\dfrac{1}{cos^2x}:\dfrac{1}{sin^2x}\)
\(=\dfrac{cot^2x}{tan^2x}\cdot\dfrac{sin^2x}{cos^2x}\)
\(=cot^2x\)
\(VP=\dfrac{tan^2x+cot^2x}{1+tan^4x}=\dfrac{\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}}{1+\dfrac{sin^4x}{cos^4x}}\)
\(=\dfrac{sin^4x+cos^4x}{sin^2x\cdot cos^2x}:\dfrac{cos^4x+sin^4x}{cos^4x}\)
\(=\dfrac{sin^4x+cos^4x}{sin^2x\cdot cos^2x}\cdot\dfrac{cos^4x}{cos^4x+sin^4x}=\dfrac{cos^2x}{sin^2x}=cot^2x\)
=>VT=VP
b:
\(\dfrac{tan^2x-cos^2x}{sin^2x}+\dfrac{cot^2x-sin^2x}{cos^2x}\)
\(=\dfrac{\left(\dfrac{sinx}{cosx}\right)^2-cos^2x}{sin^2x}+\dfrac{\left(\dfrac{cosx}{sinx}\right)^2-sin^2x}{cos^2x}\)
\(=\dfrac{sin^2x-cos^4x}{cos^2x\cdot sin^2x}+\dfrac{cos^2x-sin^4x}{sin^2x\cdot cos^2x}\)
\(=\dfrac{sin^2x+cos^2x-cos^4x-sin^4x}{cos^2x\cdot sin^2x}\)
\(=\dfrac{1-\left(cos^2x+sin^2x\right)^2+2\cdot cos^2x\cdot sin^2x}{cos^2x\cdot sin^2x}\)
\(=\dfrac{2\cdot cos^2x\cdot sin^2x}{cos^2x\cdot sin^2x}=2\)
Nhân cả tử và mẫu vế trái với \(cos2x.cosx\) ta được:
\(\frac{sin2x.sinx}{sin2x.cosx-cos2x.sinx}=\frac{sin2x.sinx}{sin\left(2x-x\right)}=\frac{sin2x.sinx}{sinx}=sin2x\)
\(cotx-tanx=\frac{cosx}{sinx}-\frac{sinx}{cosx}=\frac{cos^2x-sin^2x}{sinx.cosx}=\frac{cos2x}{\frac{1}{2}sin2x}=2cot2x\)
\(\frac{cos^2x-sin^2x}{1+sin2x}=\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sin^2x+cos^2x+2sinx.cosx}=\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{\left(cosx+sinx\right)^2}=\frac{cosx-sinx}{cosx+sinx}\)
\(=\frac{\frac{cosx}{cosx}-\frac{sinx}{cosx}}{\frac{cosx}{cosx}+\frac{sinx}{cosx}}=\frac{1-tanx}{1+tanx}\)
\(\frac{1-sinx-cos2x}{sin2x-cosx}=\frac{1-sinx-\left(1-2sin^2x\right)}{2sinxcosx-cosx}=\frac{2sin^2x-sinx}{2sinxcosx-cosx}\)
\(=\frac{sinx\left(2sinx-1\right)}{cosx\left(2sinx-1\right)}=\frac{sinx}{cosx}=tanx\)
`B=(sin2x)/(tanx+cot2x)`
Tử ` = 2sinxcosx`
Mẫu `=(sinx)/(cosx) + (cos2x)/(sin2x)`
`=(sinx . sin2x + cosx .cos2x)/(2sinx cosx . cosx)`
`=(cos (2x-x))/(2sinxcos^2x)`
`=(cosx)/(2sinxcos^2x)`
`=1/(2sinxcosx)`
`=> B = sin^2 2x`
Lớp 8 nên không chắc ạ.
\(B=\dfrac{sin2x}{tanx+cot2x}=\dfrac{2sinx.cosx}{\dfrac{sinx}{cosx}+\dfrac{cos2x}{sin2x}}=\dfrac{2sinx.cosx}{\dfrac{sinx.sin2x+cos2x.cosx}{cosx.sin2x}}=\dfrac{2sinx.cosx}{\dfrac{.2sin^2x.cosx+cosx\left(2cos^2x-1\right)}{cosx.2sinx.cosx}}=\dfrac{2sinx.cosx.}{\dfrac{cosx\left(2sin^2x+2cos^2x-1\right)}{cos.2sinx.cosx}}=\dfrac{2sinx.cosx}{\dfrac{1}{2sinx.cosx}}=2sinx.cosx.2sinx.cosx=sin^22x.\)