Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
bài này của bạn trong câu hõi hay ngày hôm qua có 1 chị giải rồi á bạn vào xem nha
Câu 1 .
A = 13 + 23 + 33 + ... + 1003
= 1 .1.1 + 2.2.2 + 3.3.3 + ... + 100.100.100
= ( 1 + 2 + 3 + .... 100 ) + ( 1 + 2 + 3 + ... + 100 ) + ( 1 + 2 + 3 + ... + 100 )
= ( 1 + 2 + 3 + .... + 100 )3
Do đó A \(⋮\)1 + 2 + 3 + ... + 100
Câu 2 :
+, Ta có : \(\left(2,125\right)=1\Rightarrow2^{100}\equiv1\left(mod125\right)\)
Do đó 2100 có thể có tận cùng là : 001, 251 ,376, 501, 626 , 751 ( 1)
+, Lại có : \(2^4\equiv0\left(mod8\right)\Rightarrow2^{100}\equiv0\left(mod8\right)\)
Do đó 2100 có 3 chữ số tận cùng chia hết cho 8 ( 2)
Từ (1) và (2) => 2100 có 3 chữ số tận cùng là : 376
Mà \(376\equiv1\left(mod125\right)\)
=> 2100 chia 125 dư 1
Vậy 2100 chia 125 có số dư là 1
Hok tốt
# owe
Bạn tham khảo bài làm của vài bn khác nhé ! ( Ấn vào Câu hỏi tương tự ý )
Mik phải đi ngủ rồi !
-Bye-
Vì 2n+1 là số CP lẻ => 2n+1 : 8 dư 1 => 2n chia hết cho 8
=> n chia hết cho 4 => n chẵn => n+1 lẻ => n+1 : 8 dư1
=> n chia hết cho 8 (*)
ta có n+1+2n+1=3n+2 _(đồng dư) _ 2 (mod 3)
màn+1 và 2n+1 _(đồng dư)_ 0(hoặc)1 (mod 3)
từ đó => n+1 và 2n+1 _(đồng dư)_ 1(mod 3)
=>n chia hết cho 3 (**)
từ (*) và (**) mà (3,8)=1 => n chia hết cho 24
=> đpcm
Bạn tham khảo nhé ^^ http://olm.vn/hoi-dap/question/626962.html
Vì \(2n+1\)là số chính phương, mà \(2n+1\) là số lẻ nên đặt \(2n+1=\left(2a+1\right)^2\)
\(\Leftrightarrow2n+1=4a^2+4a+1\)\(\Leftrightarrow2n=4a^2+4a\)\(\Leftrightarrow n=2a^2+2a\)\(\Leftrightarrow n=2a\left(a+1\right)\)
\(\Rightarrow n⋮2\)\(\Rightarrow n+1\)là số lẻ
Mà \(n+1\)là số chính phương nên ta đặt \(n+1=\left(2b+1\right)^2\)\(\Leftrightarrow n+1=4b^2+4b+1\)\(\Leftrightarrow n=4b^2+4b\)\(\Leftrightarrow n=4b\left(b+1\right)\)
Vì \(b\)và \(b+1\)không cùng tính chẵn lẻ \(\Rightarrow b\left(b+1\right)⋮2\)\(\Rightarrow4b\left(b+1\right)⋮8\)\(\Rightarrow n⋮8\)
Xin lỗi, mình chỉ chứng minh được \(n⋮8\)thôi. Nhưng còn chứng minh \(n⋮3\)kiểu gì thì mình chưa biết.