K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HS
0
PV
0
SV
23 tháng 2 2015
c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1
TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1
HN
23 tháng 2 2015
a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0
3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7
HN
1
12 tháng 2 2016
=>3x-5=0 và y2-1=0 và x-z=0
=>x=5/3 và y=-1 hoặc y=1 và z=5/3
4 tháng 3 2018
a) \(\frac{1}{8}.16^n=2^n\)
\(\frac{2^n}{16^n}=\frac{1}{8}\)
\(\left(\frac{2}{16}\right)^n=\frac{1}{8}\)
\(\left(\frac{1}{8}\right)^n=\frac{1}{8}\)
=> n = 1
\(\left(x+1\right)^{2006}+\left(y-1\right)^{2008}=0\)
\(\left\{{}\begin{matrix}\left(x+1\right)^{2006}\ge0\\\left(y-1\right)^{2008}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^{2006}+\left(y-1\right)^{2008}\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x+1\right)^{2006}=0\\\left(y-1\right)^{2008}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Thay vào C ta có:
\(C=5.\left(-1\right)^{10}-1^{15}+2007\)
\(=5-1+2007=2011\)
(x+1)2006+(y-1)2008=0
=> (x+1)2006=(y-1)2008=0
=>x+1=y-1=0
=>x=-1 và y=1
C=5x10-y15+2007=5.(-1)10-115+2007=2011