K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{8}{3}P=\frac{8}{3}ab\le\frac{1}{4}\left(\frac{8}{3}a+b\right)^2=\frac{1}{4}\left(a+b+\frac{5}{3}a\right)^2\le\frac{1}{4}\left(11+\frac{5}{3}.3\right)^2=\frac{1}{4}.16^2=64\)

\(\Rightarrow P\le\frac{64.3}{8}=24\)

dấu bằng xảy ra khi a=3;b=8

15 tháng 7 2017

eo tí thì bị lừa =)))

0=<a=<3 mà để ab lớn nhất thì điểm rơi của a là 3

=>b=8. GTLN là 24

Khi a=3;b=8 :v

16 tháng 6 2020

đặt \(t=a+b\) từ GT => \(3=t^2-ab\ge\frac{3}{4}t^2\)\(\Leftrightarrow\)\(-2\le t\le2\)

\(P=-4t^3-3t^2+18t+9=\hept{\begin{cases}\frac{-1}{4}\left(2t+3\right)^2\left(4t-9\right)-\frac{45}{4}\ge\frac{-45}{4}\left(dungvoit\le2\right)\\-\left(t-1\right)^2\left(4t+11\right)+20\le20\left(dungvoit\ge-2\right)\end{cases}}\)

\(P_{min}=\frac{-45}{4}\) tại 

\(\hept{\begin{cases}a^2+b^2+ab=3\\a+b=\frac{-3}{2}\end{cases}}\Leftrightarrow\left(a;b\right)=\left\{\left(\frac{-3-\sqrt{21}}{4};\frac{-3+\sqrt{21}}{4}\right);\left(\frac{-3+\sqrt{21}}{4};\frac{-3-\sqrt{21}}{4}\right)\right\}\)

\(P_{max}=20\) tại \(\hept{\begin{cases}a^2+b^2+ab=3\\a+b=1\end{cases}}\Leftrightarrow\left(a;b\right)=\left\{\left(2;-1\right);\left(-1;2\right)\right\}\)

12 tháng 9 2021

bài khó thế

4 tháng 4 2020

Tìm trên mạng ý

4 tháng 4 2020

\(a+\frac{1}{b}\le1=>ab+1\le b\)

\(b\le ab+1\ge2\sqrt{ab}=>\sqrt{b}\ge2\sqrt{a}=>\frac{b}{a}\ge4\)

\(T=\frac{ab}{a^2+b^2}=\frac{1}{\frac{a}{b}+\frac{b}{a}}=\frac{1}{\frac{a}{b}+\frac{b}{16a}+\frac{15b}{16a}}\)

áp dụng cô si 

\(\frac{a}{b}+\frac{b}{16a}\ge2\sqrt{\frac{ab}{16ab}}=\frac{1}{2}=>T\le\frac{1}{\frac{1}{2}+\frac{15}{16}.4}=\frac{4}{17}\)

\(=>MaxT=\frac{4}{17}\)

dấu = xảy ra khi

\(b=4a;\frac{a}{b}=\frac{b}{16a};ab=1\)

\(=>\hept{\begin{cases}4a^2=1\\b=4a\end{cases}=>\hept{\begin{cases}a=\frac{1}{2}\\b=2\end{cases}}}\)

23 tháng 6 2021

\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

áp dụng bunhia - cốpxki

\(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=6\left(a+b+c\right)\)

\(=6.2021=12126< =>P=\sqrt{12126}\)

vậy MAX P=\(\sqrt{12126}\)

24 tháng 6 2021

\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

\(\Rightarrow P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

Áp dụng BĐT Bunyakovsky ta có:

\(P^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=6\left(a+b+c\right)=6\cdot2021\)

\(\Rightarrow P\le\sqrt{6\cdot2021}=\sqrt{12126}\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{2021}{3}\)

Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\frac{2021}{3}\)

18 tháng 5 2017

cái này làm r` mà

Vào link này nha bn :https://olm.vn/hoi-dap/detail/80735647348.html

Học tốt !!!

24 tháng 5 2021

\(M=\frac{\left(a+1\right)^2+2a}{a\left(a+1\right)}+\frac{\left(b+1\right)^2+2b}{b\left(b+1\right)}+\frac{\left(c+1\right)^2+2c}{c\left(c+1\right)}\)

\(M=\frac{a+1}{a}+\frac{b+1}{b}+\frac{c+1}{c}+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)

\(M=3+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)

\(M\ge3+\frac{9}{a+b+c}+2\left(\frac{9}{a+b+c+3}\right)\ge3+3+3=9\)

Dấu "=" xảy ra khi a=b=c=1